
 

1 
 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

2 
 

 
 

 

 
 
 
 

 

 

 

 

 

Course No: C11P: 

Quantum Mechanics and Applications Lab 
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Sl.No Experiment Page 
No. 

1 Solve the s-wave Schrodinger equation for the 
ground state and the first excited state of  
the hydrogen atom 

4 

2 Solve the s-wave radial Schrodinger equation for an 
atom 

7 

3 Solve the s-wave radial Schrodinger equation for a 
particle of mass m 
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Program:  

import numpy as np 
from scipy import constants as const 
from scipy import sparse as sparse 
from scipy.sparse.linalg import eigs 
from matplotlib import pyplot as plt 
hbar = const.hbar 
e = const.e 
m_e = const.m_e 
pi = const.pi 
epsilon_0 = const.epsilon_0 
joul_to_eV = e 
 
def calculate_potential_term(r): 
potential = e**2 / (4.0 * pi * epsilon_0) / r 
potential_term = sparse.diags((potential)) 
return potential_term 
 
def calculate_angular_term(r): 
angular = l * (l + 1) / r**2 
angular_term = sparse.diags((angular)) 
return angular_term 
 
def calculate_laplace_three_point(r): 
    h = r[1] - r[0] 
     
main_diag = -2.0 / h**2 * np.ones(N)      
off_diag  =  1.0 / h**2 * np.ones(N - 1) 
laplace_term = sparse.diags([main_diag, off_diag, off_diag], (0, -1, 1)) 
return laplace_term 
     
def build_hamiltonian(r): 
laplace_term =   calculate_laplace_three_point(r) 
angular_term =   calculate_angular_term(r) 
potential_term = calculate_potential_term(r) 
     
    hamiltonian = -hbar**2 / (2.0 * m_e) * (laplace_term - angular_term) - potential_term 
 
    return hamiltonian 
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def plot(r, densities, eigenvalues): 
    plt.xlabel('x ($\\mathrm{\AA}$)') 
    plt.ylabel('probability density ($\\mathrm{\AA}^{-1}$)') 
     
    energies = ['E = {: >5.2f} eV'.format(eigenvalues[i].real / e) for i in range(3)] 
    plt.plot(r * 1e+10, densities[0], color='blue',  label=energies[0]) 
    plt.plot(r * 1e+10, densities[1], color='green', label=energies[1]) 
    plt.plot(r * 1e+10, densities[2], color='red',   label=energies[2]) 
     
    plt.legend() 
    plt.savefig('qm1.png', bbox_inches='tight', pad_inches = 0.3, dpi = 700) 
    plt.show() 
    return 
 
""" set up horizontal axis and hamiltonian """ 
N = 2000 
l = 0 
r = np.linspace(2e-9, 0.0, N, endpoint=False) 
hamiltonian = build_hamiltonian(r) 
 
""" solve eigenproblem """ 
number_of_eigenvalues = 30 
eigenvalues, eigenvectors = eigs(hamiltonian, k=number_of_eigenvalues, which='SM') 
 
""" sort eigenvalue and eigenvectors """ 
eigenvectors = np.array([x for _, x in sorted(zip(eigenvalues, eigenvectors.T), key=lambda pair: 
pair[0])]) 
eigenvalues = np.sort(eigenvalues) 
 
""" compute probability density for each eigenvector """ 
densities = [np.absolute(eigenvectors[i, :])**2 for i in range(len(eigenvalues))] 
 
""" plot results """ 
plot(r, densities, eigenvalues) 
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 Program: 
import numpy as np 
from scipy import constants as const 
from scipy import sparse as sparse 
from scipy.sparse.linalg import eigs 
from matplotlib import pyplot as plt 
hbar = const.hbar 
e = const.e 
m_e = const.m_e 
pi = const.pi 
epsilon_0 = const.epsilon_0 
joul_to_eV = e 
a = [3,5,7] 
def calculate_potential_term(r): 
    potential = (e**2 / r)*(e**(-r/a)) 
    potential_term = sparse.diags((potential)) 
    return potential_term 
 
def calculate_angular_term(r): 
    angular = l * (l + 1) / r**2 
    angular_term = sparse.diags((angular)) 
    return angular_term 
 
def calculate_laplace_three_point(r): 
    h = r[1] - r[0] 
     
    main_diag = -2.0 / h**2 * np.ones(N)      
    off_diag  =  1.0 / h**2 * np.ones(N - 1) 
    laplace_term = sparse.diags([main_diag, off_diag, off_diag], (0, -1, 1)) 
    return laplace_term 
     
def build_hamiltonian(r): 
    laplace_term =   calculate_laplace_three_point(r) 
    angular_term =   calculate_angular_term(r) 
    potential_term = calculate_potential_term(r) 
     
    hamiltonian = -hbar**2 / (2.0 * m_e) * (laplace_term - angular_term) - potential_term 
 
    return hamiltonian 
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""" set up horizontal axis and hamiltonian """ 
N = 2000 
l = 0 
r = np.linspace(2e-9, 0.0, N, endpoint=False) 
hamiltonian = build_hamiltonian(r) 
 
""" solve eigenproblem """ 
number_of_eigenvalues = 30 
eigenvalues, eigenvectors = eigs(hamiltonian, k=number_of_eigenvalues, which='SM') 
 
""" sort eigenvalue and eigenvectors """ 
eigenvectors = np.array([x for _, x in sorted(zip(eigenvalues, eigenvectors.T), key=lambda pair: 
pair[0])]) 
eigenvalues = np.sort(eigenvalues) 
 
""" compute probability density for each eigenvector """ 
densities = [np.absolute(eigenvectors[i, :])**2 for i in range(len(eigenvalues))] 
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Program: 
import numpy as np 
from scipy import constants as const 
from scipy import sparse as sparse 
from scipy.sparse.linalg import eigs 
from matplotlib import pyplot as plt 
hbar = const.hbar 
e = const.e 
m_e = const.m_e 
pi = const.pi 
epsilon_0 = const.epsilon_0 
joul_to_eV = e 
k=100 #mev 
b = [0,10,30] 
m= 940 
ch = 197.3 
def calculate_potential_term(r): 
    potential = 0.5*k*(r**2) + (1/3)*b*r**3 
    potential_term = sparse.diags((potential)) 
    return potential_term 
 
def calculate_angular_term(r): 
    angular = l * (l + 1) / r**2 
    angular_term = sparse.diags((angular)) 
    return angular_term 
 
def calculate_laplace_three_point(r): 
    h = r[1] - r[0] 
     
    main_diag = -2.0 / h**2 * np.ones(N)      
    off_diag  =  1.0 / h**2 * np.ones(N - 1) 
    laplace_term = sparse.diags([main_diag, off_diag, off_diag], (0, -1, 1)) 
    return laplace_term 
     
def build_hamiltonian(r): 
    laplace_term =   calculate_laplace_three_point(r) 
    angular_term =   calculate_angular_term(r) 
    potential_term = calculate_potential_term(r) 
     
    hamiltonian = -hbar**2 / (2.0 * m_e) * (laplace_term - angular_term) - potential_term 
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    return hamiltonian 
 
""" set up horizontal axis and hamiltonian """ 
N = 2000 
l = 0 
r = np.linspace(2e-9, 0.0, N, endpoint=False) 
hamiltonian = build_hamiltonian(r) 
 
""" solve eigenproblem """ 
number_of_eigenvalues = 30 
eigenvalues, eigenvectors = eigs(hamiltonian, k=number_of_eigenvalues, which='SM') 
 
""" sort eigenvalue and eigenvectors """ 
eigenvectors = np.array([x for _, x in sorted(zip(eigenvalues, eigenvectors.T), key=lambda pair: 
pair[0])]) 
eigenvalues = np.sort(eigenvalues) 
 
""" compute probability density for each eigenvector """ 
densities = [np.absolute(eigenvectors[i, :])**2 for i in range(len(eigenvalues))] 
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Sl.No Experiment Page 
No. 

1 Measurement of susceptibility of paramagnetic 
solution (Quinck`s Tube   Method). 

13 

2 Determine the Coupling Coefficient of a piezoelectric 
crystal. 

23 

3 Measurement of resistivity of a semiconductor (Ge) 
with temperature by four-probe method (room 
temperature to 150 oC) and determine its band gap. 

26 

4 Measurement of Dielectric Constant of a dielectric 
Materials  

44 

5 To determine the Hall coefficient of a semiconductor 
sample 

47 

6 Study of magnetic hysteresis in ferromagnetic 
materials 

60 
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1. MAGNETIC SUSCEPTIBILITY OF A PARAMAGNETIC 
MATERIAL BY QUINCKE’S METHOD 

 Objective 

1. To determine the magnetic susceptibility χ of a given paramagnetic solution for a 
specific concentration.  

2. Calculate mass susceptibility χ′, Molar susceptibility χ″, Curie constant C and 
Magnetic dipole moment.  

 Theory  
When a material is placed within a magnetic field, the magnetic forces of the material's 

electrons will be affected. This effect is known as Faraday's Law of Magnetic Induction. 

However, materials can react quite differently to the presence of an external magnetic field. 

This reaction is dependent on a number of factors, such as the atomic and molecular structure 

of the material, and the net magnetic field associated with the atoms. The magnetic moments 

associated with atoms have three origins. These are the electron motion, the change in motion 

caused by an external magnetic field, and the spin of the electrons. In most atoms, electrons 

occur in pairs with spins in opposite directions. These opposite spins cause their magnetic 

fields to cancel each other. Therefore, no net magnetic field exists. Alternately, materials with 

some unpaired electrons will have a net magnetic field and will react more to an external 

field. Most materials can be classified as diamagnetic, paramagnetic or ferromagnetic.  

Although you might expect the determination of electromagnetic quantities such as 

susceptibility to involve only electrical and magnetic measurements, this practical shows how 

very simple measurements of mechanical phenomena, such as the displacement of a liquid 

column can be used instead. Quincke devised a simple method to determine the magnetic 

susceptibility, χ, of a paramagnetic solution by observing how the liquid rises up between the 

two pole pieces of an electromagnet, when a direct current is passed through the 

electromagnet coil windings. A material’s magnetic susceptibility tells us how “susceptible” 

it is to becoming temporarily magnetized by an applied magnetic field and defined as the 

magnetization (M) produced per unit magnetic field (H). 

 

                           ߯ = ெ
ு

          (1) 

Consider a paramagnetic medium in the presence of a uniform applied flux density Bo. 

Loosely speaking, paramagnets are materials which are attracted to magnets. They contain 
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microscopic magnetic dipoles of magnetic dipole moment m which are randomly oriented. 

However, in the presence of a uniform field B each dipole possesses a magnetic potential 

energy  ࢁ =  So they all tend to align up parallel to B, which is the orientation in .[1] ࡮.࢓−

which their potential energy is minimum (i.e. most negative). Consequently, the liquid, which 

contains many such dipoles, will tend to be drawn into the region of maximum field since this 

will minimize its total magnetic potential energy.  In other words, the liquid experiences an 

attractive magnetic force Fm pulling it into the region of strongest field. The dipoles in the 

liquid, FeCl3 solution for this experiment are due to Fe3+ ions which are paramagnetic in their 

ground-state. The “spins” of several outer electrons are aligned parallel to each other to gives 

rise to a net magnetic moment m which is not compensated by other electrons. A region of 

empty space permeated by a magnetic field H possesses an energy whose density (energy per 

unit volume) is u = ½µoH2 [1], where µo is the magnetic permeability of vacuum.  

 

In presence of a medium, this magnetic energy density may be written: 

= ݑ   ଶ           (2)ܪߤ½ 

where µ is the magnetic permeability of the medium and H = |H|. For fields which are not too 

large, the magnetic permeability  µ of a paramagnet can be treated as independent of the 

applied field; i.e. it is a “constant”. Note that µ>µo for a paramagnet. The H vector has the 

very useful property that its tangential component is continuous across a boundary, so that the 

value of H in the air above the meniscus is equal to that in the liquid. This is in contrast to the 

flux density, where B0 in air is different (less, in this case) from the value Bin the liquid: 

ܪ  = ஻బ
ఓబ

= ஻
ఓ

= ஻
ఓబ(ଵାఞ)

                        

(3) 

 
Suppose that, when the field is turned on, the meniscus in the narrow tube rises by an amount  

h, relative to its zero-field position (see Fig. 1). A volume πr2h of air in the narrow tube (with 

permeability µo) is, therefore, replaced by liquid. Hence, the magnetic potential energy of this 

volume of space increases by an amount: 

ܷ߂ = ଵ
ଶ

ߤ) − ଶܪ(଴ߤ ×  (4)      (ଶℎݎߨ)
 

The work done by the upward magnetic force Fm in raising the liquid by an amount h isܨ௠ =
௱௎
௛

= ଵ
ଶ

ߤ) −  ଶ                                        (5)ݎߨଶܪ(଴ߤ
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When the liquid in one arm of the tube rises by h, it falls on the other arm by h. It continues 

to rise till the upward magnetic force is balanced by the weight of the head of liquid. The 

downward gravitational force on the head of liquid, of mass m, is given by- 

 
where  ρ is the density of the liquid. However, there is also a very small additional upwards 

force on the liquid due to the buoyancy of the air, which, strictly, ought to be included (By 

the Principle of Archimedes, bodies immersed in any fluid, even air, experience this 

buoyancy; you are yourself very slightly lighter by virtue of the surrounding air, though this 

effect is extremely tiny compared to that which you experience when immersed in a much 

denser fluid, such as water). The liquid in the narrow column displaces a volume of air, while 

that in the wide column is replaced by air, and this leads to a net upwards buoyancy force on 

the narrow column given by                                       

 
where ρa is the density of the air. Combining all these forces, we have Fm=Fg-Fb, so that 

 
Using Eq.3 in Eq.8, we finally obtain the volume susceptibility, which is a dimensionless 

quantity: 

 
Where χa is the susceptibility of air. In practice, the corrections due to air are negligible. 

There will also be a small but significant diamagnetic (i.e.  Negative) contribution to the 

susceptibility mainly due to water. The total susceptibility of the solution is given by  χ  = 

χFe+  χwater. In the present work you will correct χ to yield the true value of  χFe. Some other 

parameters are defined in terms of volume susceptibility as follows: 

Mass Susceptibility is given by:  χ′= χ/ρ                     (10) 

Molar Susceptibility is given by:  χ′′= χ′M                  (11) 

where M= Molecular weight 

Curie constant is given by: C = χ′′/T                   (12) 

where T= Temperature of sample  

Magnetic moment µof dipole of the specimen by relation 
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µ= 2.8241√C                                 (13) 

where µ is expressed in Bohr magnetron µB with a value of 9.272 ×10-24A-m2 

Literature value of molar susceptibility of FeCl3 is +1.69 x 10-8 m3/mol [2]. 

Since the thermal effects tend to destroy the alignment of magnetic dipoles, so the 

susceptibility of a paramagnet decreases as the temperature T is increased. Using statistical 

mechanics, it may be shown that at high temperatures (kT >> mB) the contribution χFe of the 

paramagnetic Fe3+ ions to the volume susceptibility of the solution is given by, 

 
Where k is Boltzmann's constant and N is the number of Fe3+ ions per unit volume, p is the 

magneton number defined in Appendix A, µB is the Bohr magneton and m = pµB. The 1/T 

dependence of χMn is known as Curie's Law. 

The above theory assumes that the magnetic field acting on each ion is just the applied field 

B; field and contributions due to neighboring magnetic ions are neglected. For dilute 

paramagnetic materials these other contributions are very small and the approximation is 

valid. This is not so for concentrated magnetic materials and ferromagnets. 

Apparatus: 
1.  Adjustable electromagnet with pole pieces  

2.  Constant power supply (0-16 V, 5A DC)  

3.  Digital Gauss meter  

4.  Hall probe for magnetic strength measurement  

5.  Traveling Microscope  

6.  Quincke’s tube (a U tube)  

7.  Measuring cylinder (100 ml), Pipette (5 ml)/dropper, Wash bottle  

8.  Specific gravity bottle (25 cc)  

9.  FeCl3 for making solutions  

10.  Electronic balance (Least count = 0.01gm)  

11.  Connecting cords 
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Experimental set-up  
A schematic diagram of Quinck’s method is shown in Fig.1. Quinck’s tube is U shaped glass 

Fig. 1: Schematics of the set up 
 

tube. One arm of the tube is placed between the pole-pieces of an electromagnet shown as N-

S such that the meniscus of the liquid lies symmetrically between N-S. The length of the limb 

is sufficient as to keep the other lower extreme end of this limb well outside the field H of the 

magnet. The rise or fall h is measured by means of a traveling microscope of least count of 

the order of 10-3 cm. The picture of the actual set up is given in Fig. 2. 

                            Fig. 2 Experimental set up for Quicke’s method 
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Procedure  
1) Prepare the FeCl3 solution of known mass (10 or 20gm) in 100 ml water.  

2) Calculate the number of moles of Fe3+ ions per unit volume of the solution. 1 mole of a 

substance has a weight in grams equal to its molar  weight,  Wm. The molecular weight is 

found by adding up the atomic weights of the constituent atoms of the molecule. If  X 

grams of  FeCl3 were dissolved in  V  m3  of the solution, the number of moles is  X/Wm. 

Each mole contains NA (Avagadro’s number) of molecules. Thus the number of 

molecules in V m3 is N = NAX/Wm 

3) Measure the density ρof your solution using a specific gravity bottle. The method here is 

to  

a. weigh the bottle + stopper when it is dry and empty 

b. fill it with distilled water and weigh it again 

c. dry it with a dryer and fill it with your solution and weigh it again. The density 

ρ may be found, knowing the density of water ρwater, from the following 

equation 

 

4) Adjust the pole pieces so that the gap between themis about 10 mm (Diameter of the U-

tube is about 8mm). 

5) Connect the electromagnet coils in series to the power supply and ammeter. The field 

between the pole pieces must be calibrated as a function of current over an appropriate 

range (1- 4A). The magnet may run continuously witha current of 5A (for precautions, we 

would avoid prolonged use at 5A, hence the rangeup to 4A) and for short periods with 

10A. The Hall probe will be used to measure the magnetic field  B(how does this work?). 

Position the Hall probe using the stand provided so that the same position is maintained 

throughout the calibration. With the U-tube removed, insert the Hall probe into the field 

region between the flats of the polepieces. 

6) Switch on the Gauss meter and rotate the zero adjustment knob till you get zero reading 

on it. Now, switch on the power supply and adjust the current at 1A. Adjust the probe’s 

position and orientation until it registers a maximum positive field. Clamp the probe 

handle firmly in place so that it cannot move. Measure the flux density B. Slowly increase 

the current (I) in small steps and record corresponding values of B.  
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7) If you record your calibration data with sufficiently small increments of current this will 

provide the best definition of the entire curve, which will be linear in a certain range for 

smaller values of current and then the slope will decrease as magnetic saturation occurs in 

the material of the pole pieces. Note there may also be some magnetic hysteresis present 

and for a given current, the field may be slightly different, depending on whether the 

current is increasing or decreasing. The magnetic saturation means that the highest values 

of current do not produce an equivalent increase in the values ofthe magnetic field.  

8) Bring the current in the power supply back to zero and switch off supply after you finish 

calibration. 

9) Transfer some of the prepared solution to the U- tube so that the meniscus is at the centre 

of the pole-pieces. Focus the travelling microscopeon the meniscus and note down the 

initial reading for B = 0. 

10) Switch on the supply and slowly vary the current upto 4A in steps of 0.5A. The solution 

in the tube rises up. Note down the corresponding height of the liquid column for each 

value of current.  

Observations 
Table 1: Data for calibration 

Sl# I (A) B (Gauss) 
   
   

Table 2: Measurement of ρ 

Wt. of empty specific gravity bottle (a) = ..  

Wt. of specific gravity bottle filled with test liquid (b) = ..  

Wt. of specific gravity bottle filled with distilled water (c) = .. 

 
Use ρwater= 1000 kg/m3  

Table 2. Measurement of h ~ B 

SL 

No. 

I B B2 Meniscus Reading Difference 

h= (b-a) B=0 (a) B≠0 (b) 

M.S V.S T.R M.S V.S T.R. 
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Graph:  

Plot a graph h~B2 and do straight line fitting to determine slope.  

Calculations:Use χa ~0 and ρa= 1.29 kg/m3 

Volume susceptibility, χwater = -9.04 X 10-6 

χFe = ……       χFe’= ……        χFe” = ……       C = ……  µ= …… 

 

Conclusion and discussion: 

 

Precautions: 

1. Scrupulous cleanliness of the U-tube is essential. Thoroughly clean the tube and rinse it 

well with distilled water before starting and dry it. 

2. Make several sets of measurements to ensure consistency; false readings can arise from 

liquid running down the tube or sticking to the sides. 

3. Carefully swab down the inside of the U- tube with a cotton bud, to ensure that there are 

no droplets of liquid which might interfere with the plastic spacers on the rod which 

measures the height of the meniscus. 

4. Do not use the U-tube for longer than one laboratory period without recleaning. After 

cleaning ask the laboratory technician to dry the tube for you with compressed air. 

5. Try to avoid the backlash error of the travelling microscope. The small change of height 

may cause you more error in the calculation. 

 

References  
1] S. Grant and W.R. Phillips, “Electromagnetism”, (Wiley)  

2] http://www.agoenvironmental.com/sites/default/files/pdf/diamagnetic%20element% 

20list.pdf 

 

Appendix A: Magnetic moment values 
The magnetic susceptibility of a substance is related to the magnetic dipole moments of its 

individual atoms or ions. The total angular momentum of an atom or ion arises from both the 

orbital motion and the spin of the electrons. The magnetic dipole moment can be expressed in 

the form-       m = pµB, 
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where p, the magneton number, is the dipole moment in units of the quantity  µB,  which is 

known as the Bohr magneton. The Bohr magneton is the atomic unit of magnetic moment 

defined by, 

µB= eh / 4πme 

where, in this equation, e and  me  are the electronic charge and mass and  h  is Planck's 

constant. The dimensionless magneton number p  is usually between 1 and 10 for atomic 

systems. 

The rules for calculating p can be summarised as follows,  

(i) the unfilled electron shells for any atom or ion can be found in standard tables.  

(ii) the quantum numbers of the individual electrons can be added 

 
to give the largest values of L and S consistent with the Pauli Exclusion Principle  

(iii) the total quantum number J can be found from  

J = L - S first half of the electron shell  

J = L + S second half of the electron shell  

(iv) the magneton number p is given by,  

 where g the so called Landé splitting factor 

 

takes into account that the spin effectively creates twice as much magnetic moment as the 
orbital motion. 

(v) the result of these calculations are tabulated  in nost textbooks on condensed matter 
physics, See the Table 1. 

 

 

 

Table 1:  Magneton numbers pfor some transition metals (TM2+free ions)  
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No of 
electrons  
in 3d shell 

Ion S L J P 

0 Ca2+ 0 0 0 0 
1 Sc2+ 1/2 2 3/2 1.55 
2 Ti2+ 1 3 2 1.63 
3 V2+ 3/2 3 3/2 0.77 
4 Cr2+ 2 2 0 0 
5 Mn2+ 5/2 0 5/2 5.92 
6 Fe2+ 2 2 4 6.71 
7 Fe3+ 5/2 0 5/2 5.92 
8 Co2+ 3/2 3 9/2 6.63 
9 Ni2+ 1 3 4 5.59 
10 Cu2+ 1/2 2 5/2 3.55 
11 Zn2+ 0 0 0 0 
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2. DETERMINE THE COUPLING CO-EFFICIENT OF PIEZOELEC-

TRIC CRYSTAL 

 Objective 
To determine the coupling co-efficient of a piezoelectric crystal 

 Apparatus require 

i) Piezoelectric crystal, 5 nos crystal value mounted inside the box and connections 

brought out the terminals. 

ii) Resistance box 10-100 ohm 

iii) Inductance box 10-100 mH 

iv) Capacitance box 1nF – 10 nF 

v) AC Voltmeter 0-10V 

vi) AC current Meter 0-5 mA 

vii)  Frequency Source 1 Hz to 2 mHz 

 Formula Used- 
The coupling coefficient KC = 1/Q 

Where Q= ଵ
ோ
ට௅
஼

   Hz (Quality factor) 

Series Resonance frequency fS =    ଵ
ଶగඥ1/ܥܮ = ଵ

ଶగ√௅஼
  Hz 

Parallel Resonance frequency fP =    ଵ
ଶగඥ1/்ܥܮ = ଵ

ଶగඥ௅஼೅
  Hz 

Where L = inductance in hennry 

          C = Capacitance in farads 

           CT =  ஼×஼೘
஼ା஼೘

 

Quality Factor, Q = ௙భ
௙మି௙భ

 

So, the coupling coefficient, KC = ௙మି௙భ
௙భ

 

Theory- 
A quartz crystal exhibits the property that when mechanical stress is applied across the faces 

of the crystal, a difference of Potential develops across opposite faces of the crystal. This 

property of a crystal called the piezoelectric effect. Similarly if a voltage applied across on set 

of faces of the crystal causes mechanical distortion in the crystal shape.  
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When alternative voltage is applied to crystal, mechanical vibrations are set up. These 

vibrations having a natural resonant frequency depend on the crystal. 

Although crystal has electro mechanical resonance, we can represent the crystal action by an 

equivalent electrical resonant circuit as shown in fig.1. The inductor L and capacitor C 

electrical equivalents of the crystal mass and compliance. While resistance R is an electrical 

equivalent of the crystal structure is internal friction. The shunt capacitance Cm shows the 

capacitance due to mechanical mounting of the crystal. Because the crystal losses represented 

by RI are small, the equivalent crystal Q (Quality factor) is high typically 20,000 values of Q 

upto 106 can be achieved by using crystal. 

Series and Parallel Resonance:- Crystal as represented by the equivalent electrical circuit can 

have  two resonant frequencies- 

 One resonant condition occurs when the reactance of the series RLC leg are equal 

(and opposite). For this the series resonant impedance is very low (equal to R) 

 The other resonant condition occurs at a higher frequency when the reactance of the 

reactance of the series resonant leg equal the reactive of the capacitor Cm. This is a 

parallel or anti resonance condition of the crystal. At this frequency offers very high 

impedance to the external circuit. The graph between current (I) or impedance (Z) as 

shown in fig.2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Table No. 2:  V = ……. Volt 

S. No. Frequency 

Hz - MHz 

Current (I) 

mA 

Impedance- 

Z= V/I 

1. 

2.  ……… 
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Table No. 2 

Capacitance of Piezoelectric crystals measured by the capacitance meter. 

XTAL (MHz) Capacitance, Cm (pF) 

4.096 

4.433 

6.144 

8.0 

11.059 

12 

13.5 

14.5 

15.2 

12.9 

Calculations 
Plot the graph between frequency and impedance, Z 

Value of coupling Co-efficient KC = ிమିிభ
ிభ

  from the graph 

Theoretical value of coupling coefficient KC=1/Q 

Percentage of error = …………………..% 
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3. MEASUREMENT OF RESISTIVITY AND DETERMINATION OF 

BAND GAP USING FOUR-PROBE METHOD 
Objective- 

(i) To measure resistivity of a semiconductor and a metal at room temperature. 

(ii) To measure resistivity of a semiconductor as a function of temperature (room 

temperature to 150 oC) and determination of energy band gap. 

 

INTRODUCTION 

Four Probe method is one of the standard & most commonly used method for the accurate 

measurement of resistivity. It overcomes the problem of contact resistance and also offer 

several other advantages. Accurate resistivity measurement in samples having a variety of 

shapes is possible by this method. The pressure contacts provided in the Four Point 

Arrangement are especially useful for quick measurement. This setup can measure samples of 

reasonably wide resistivity range (micro ohm to mega ohm). 

 
BRIEF DESCRIPTION OF THE SET UP 
 

1. PID-TZ Controlled Oven 

The unit is a high quality PID (Proportional, Integral and Differential) controller wherein 

the temperatures can be set and controlled easily. The P, I and D parameters are factory set 

( P = 1.8, I = 300, D = 80) for immediate use, however, the user may adjust these for 

specific applications as well  as  auto-tune the oven whenever required. The steps for 

these are given in the user manual of the controller.  A common controller may be used 

either for our small oven, up to 200°C or a larger oven up to 600°C. The two are switch 

selectable and use thermocouple as temperature sensors (see Fig.1). 

 
General Specifications 
 

The controller is designed around Autonics Temperature Controller Model TZN4S. Although 

this is a very versatile piece of equipment, below is a summary of the specifications that are 

relevant to the present application. For more details the reader may refer to the full catalog of 

the controller available at www.autonics.com 
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Temperature Range Ambient to 200°C/600°C 

Power Supply 100-240VAC; 50/60Hz 
 

Display Method 
7 Segment LED display 
[Process value (PV):Red, Set value (SV):Green] 

Input Sensor Thermocouple (Chromel – Alumel) 

Control Method PID, PIDF, PIDS 

Display Accuracy ± 0.3% 

Setting Type Setting by front push buttons 

Proportional Band (P) 0 to 100.0% 

Integral Time (I) 0 to 3600 Sec 

Derivative Time (D) 0 to 3600 Sec 

Control Time (T) 1 to 120 Sec 

Sampling Time 0.5 Sec 

Setting (P, I & D) Manual / Auto-tuned 

 

 
 

Controls 
(1)  OVEN SELECTOR Switch – to select between the smaller 200 ºC or larger 600 ºC 

ovens. Select 200ºC for the small oven used in this experiment.  
(2)  POWER CONNECTORS – a 3-pin round for small 200ºC oven and two sockets for the 

large 600ºC oven  
(3)  SENSOR CONNECTOR – Common thermocouple input for both ovens  
(4)  OVEN ON-OFF switches – for individual oven with itsown indicator  
(5)  PID TEMPERATURE CONTROLLER – for setting, displaying and controlling the 

temperature of the oven used. Details shown in Fig.2 above  
(6)  MAINS SWITCH – for connecting the mains power to the unit 
 
2. Constant Current Source, Model : CCS-01 

(for low resistivity to medium resistivity samples) 
It is an IC regulated current generator to provide a constant current to the outer probes 

irrespective of the changing resistance of the sample due to change in temperatures. 

The basic scheme is to use the feedback principle to limit the load current of the 
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supply to preset maximum value. Variations in the current are achieved by a 

potentiometer included for that purpose. The supply is a highly regulated and 

practically ripples free d.c. source. The constant current source is suitable for the 

resistivity measurement of thin films of metals/ alloys and semiconductors like 

germanium. 

Specification 

Open Circuit Voltage : 10V 
Current Range : 0-20mA, 0-200mA 
Resolution : 10µA 
Accuracy : ± 0.25% of the reading ± 1 digit 
Display : 3½ digit, 7 segment LED with auto polarity and 

decimal indication 
Load Regulation : 0.03% for 0 to full load 
Line Regulation : 0.05% for 10% changes 
Controls 
(1) Range Switch – The current meter can be switched between 20mA and 200mA 

range using this switch. Keep the range switch at the desired range and set the 
desired current using the current control knob. In case the meter shows over 
ranging (sign of 1 on the left and all other digits goes blank) range switch maybe 
shifted to higher range. 

(2) Panel Meter – Display the current in mA. 

(3) Current Control – This is to feed the desired current in the Sample. 

(4) Current Output – Connect suitable connector from Four probe Arrangement in 
this connector. This will enable the unit to feed desired current in the sample 

(5) ON-OFF switch – To power the unit ON/ OFF. 
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3. Low Current Source, Model : LCS-02 
     (for high resistivity samples) 

Low Constant Current Sources are needed when the sample resistance, either 

inherently or due to contact resistances, is large. These include the resistivity 

measurement of silicon wafers or high resistivity film deposits. Large values of the 

sample resistance make the measurement prone to noise pick-up from the mains and 

elsewhere. This is one of the most significant problems of high resistance 

measurement. 

In the present unit the problem of pick-up has been reduced to very low levels by 

having a battery operated source. Since the current requirement is small and the 

circuit being specially designed for this purpose, the batteries should have a 

reasonably long life. Further, a transistor circuit has been preferred over an Op-Amp 

based circuit as it offers a reduction of the battery count and is also simpler. An 

internal voltage reference of 2.5 volt ensures reliable operation even when the batter 

voltage falls and a ten turn potentiometer makes the current adjustment very easy. 

The actual current is read on a 3½ digit LCD display. There are two current ranges, 

which may be selected with the help of a switch on the panel. 

Specification 
Open Circuit Voltage : 18V 
Current Range : 0-2A, 0-20A, 0-200A, 0-2mA  
Resolution : 1nA at 0-2A range 
Accuracy :  0.25% of the reading  1 digit 
Display : 3½ digit, 7 segment LCD with auto polarity and 

decimal indication 
Load Regulation : 0.05% for 0 to full load  
Power : 3 x 9V batteries 

Controls 

(1) Range Switch – The current meter can be switched between 2µA, 20µA, 200µA 
and 2mA range using this switch. Keep the range switch at the desired range and 
set the desired current using the current control knob. In case the meter shows 
over ranging (sign of 1 on the left and all other digits goes blank) range switch 
maybe shifted to higher range. 

(2) Panel Meter – Display the current in µA/ mA (as per setting of Range Switch) 

(3) Current Control – This is to feed the desired current in the Sample. 
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(4) Current Output – Connect suitable connector from Four probe Arrangement in 
this connector. This will enable the unit to feed the desired current in the sample 

(5) ON-OFF Switch – To power the unit ON/ OFF. 

 
Note: Please note that this unit is operated on 9V x 3 batteries. In case there is any problem 
in operation, please check the batteries also. Batteries are assessable after opening the Top 
Cover of the unit. 
 

 
 

4. D.C. Microvoltmeter, Model DMV-001  
Digital Microvoltmeter, DMV-001 is a very versatilemultipurpose instrument for the 
measurement of low dc voltage. It has 5 decade ranges from 1mV to 10V with 100% 
over-ranging. For better accuracy and convenience, readings are directly obtained on 
3½ digit DPM.  

This instrument uses a very well designed chopper stabilized IC amplifier. This 
amplifier offers exceptionally low offset voltage and input bias parameters, combined 
with excellent speed characteristics.  

Filter circuit is provided to reduce the line pickups of 50 Hz. All internal power 
supplies are IC regulated. 

Specification 
Range : 1mV, 10mV, 100mV, 1V & 10V with 100% over 

ranging 
Resolution : 1µ V 
Accuracy :  0.2% 
Stability : Within  1 digit 
Input Impedance : >1000MΩ (10MΩ on 10V range) 
Display : 3½ digit, 7 segment LED with auto polarity and decimal 
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indication 
Controls 

(1) Range Switch – The voltmeter can be switched between 1mV, 10mV, 100mV, 
1V & 10V range using this switch. Keep the range switch at lowest range for 
better accuracy. In case the meter shows over ranging (sign of 1 on the left and 
all other digits goes blank) range switch maybe shifted to higher range. 

(2) Panel Meter – Display the Voltage in mV/ V (as per setting of Range Switch) 

(3) Zero Adj. Knob – This is to adjust Zero of Microvoltmeter before starting the 
experiment. 

(4) Voltage Input – Connect suitable connector from Four probe Arrangement in 
this connector. This will enable the unit to measure the voltage output of the 
sample 

(5) ON-OFF switch – To power the unit ON/ OFF. 
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5. Four Probes Arrangement 

It has four individually spring loaded probes. The probes are collinear and equally 

spaced. The probes are mounted in a teflon bush, which ensure a good electrical 

insulation between the probes. A teflon spacer near the tips is also provided to keep 

the probes at equal distance. The probe arrangement is mounted in a suitable stand, 

which also holds the sample plate and RTD sensor. This stand also serves as  the lid 

of PID Controlled Oven. Proper leads are provided for current, Voltage & Temp. 

measurement with their universal connectors. For current measurement there is three 

pin connector which can be connected to the CCS-01/ LCS-02 as per requirement of 

sample. For voltage measurement BNC connector is used connected to DMV-001 

unit. For temperature measurement, a two pin connector is provided for connection 

with PID- Controlled oven unit PID-200 at connector marked as Temperature Sensor. 

Three leveling screws are provided in Four Probe arrangement by which we can 

adjust the level of platform to make it horizontal. A probe holding screw is provided 

at the collar of the arrangement. Initially it should be in loose position, to allow free 

movement of Probe Pipe. After placing the sample the Probe Pipe should be lowered 

so that all four pins touches the sample. Further Press the pipe very lightly so thatthe 

assured firm contact is made of all Four Pins with the sample. Tighten the Probe 

Holding Screw at this position. The Probe Arrangement is ready with the sample for 

the experiment. 

APPARATUS 
(1). PID Controller with a Oven Unit, Model 
PID-TZ (2). Constant Current Sources:- 

a) Constant Current Source, Model CCS-01 

b) Low Current Source, Model 
LCS-02 (3). D.C. Microvoltmeter, Model 
DMV-001 

(4). Four Probe Arrangement with Thermocouple sensor and suitable 
connectors for DMV and CCS/ LCS. 

(5). Set of test samples and emery powder.
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BASIC THEORY 

Four sharp probes are placed on a flat surface of the material to be measured 
(Fig.7). The current is passed through the two outer electrodes, and the floating 
potential is measured across the inner pair. If the flat surface on which the probes rest 
is adequately large, it may be considered to be a semi-infinite volume. To prevent 
minority carrier injection and make good contacts, the surface on which the probes 
rest, maybe mechanically lapped. 

The experimental circuit used for measurement is illustrated schematically in 
Fig. 8. A nominal value of probe spacing, which has been found satisfactory, is an 
equal distance of 
2.0 mm between adjacent probes. 

In order to use the four-probe method, it is assumed that: 
1. The resistivity of the material is uniform in the area of measurement. 

2. If there is minority carrier injection into the semiconductor by the current - 
carrying electrodes, most of the carriers recombine near the electrodes so that their 
effect on the conductivity is negligible. (This means that the measurements should 
be made on surface, which has a high recombination rate, such as mechanical by 
lapped surfaces). 

3. The surface on which the probes rest is flat with no surface leakage. 

4. The four probes used for resistivity measurements are equally spaced and collinear. 

5. The diameter of the contact between the metallic probes and the semiconductor 
should be small compared to the distance between probes. 

6. The surfaces of the material may be either conducting or non-conducting. A 
conducting boundary (such as copper) is one on which the sample is plated or placed.  
A non-conducting boundary is produced when the surface of the sample is in contact 
with an insulator. 
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CASE 1 - RESISTIVITY MEASUREMENTS ON A LARGE SAMPLE 

One added boundary condition is required to treat this case namely, the probes 

are far from any of the other surfaces of the sample and the sample can thus be 

considered a semi- infinite volume of uniform resistivity material. Fig. 7 shows the 

geometry of this case. Four probes are spaced S1, S2 and S3 apart. Current I is passed 

through the outer probes (1 and 4) and the floating potential V is measured across the 

inner pair of probes 2 and 3. 

The floating potential Vf a distance r from an electrode carrying a current I in 

a material of resistivity 0 is given by 

௙ܸ =
ܫ଴ߩ
 ݎߨ2

  
In the model shown in Fig. 7 there are two current-carrying electrodes, numbered 1 

and 4, and the floating potential Vf, at any Y point in the semiconductor is the 

difference between the potential induced by each of the electrodes, since they carry 

currents of equal magnitude but in opposite directions Thus: 

௙ܸ = ఘబூ
ଶగ

( ଵ
௥భ
− ଵ

௥ర
)                               (1) 

Where r1 = distance from probe number 1 and r4 = distance from probe number 4. 

The floating potentials at probe 2, Vf2, and at probe 3, Vf3 can be calculated 
from (1) by substituting the proper distances as follows:  

 
and the resistivity ρ0 is computable as 
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Fig. 9: Images for the case of the resistivity probes on a slice with conducting bottom 
surface 

 
 
 

When the point spacings are equal, that is, S1= S2= S3 = S the above simplifies to: 
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CASE 2- RESISTIVITY MEASUREMENTS ON A THIN SLICE-
CONDUCTING BOTTOM SURFACE 

Two boundary conditions must be met in this case; the top surface of the slice must be a 

reflecting (non-conducting) surface and the bottom surface must be an absorbing 

(conducting) surface. Since the two boundaries are parallel, a solution by the method of 

images requires for each current source an infinite series of images along a line normal 

to the plane and passing through the current source. 

The model for this case is shown in Fig. 9. The side surface of the slice is assumed to be 

far from the area of measurement and, therefore, only the effect of the bottom surface 

needs to be considered. In this analysis equal probe spacing S shall be assumed. The 

width of the slice is W. The array of images needed is indicated in Fig. 9. where the 

polarity and spacing of the first few images are as shown. 

The floating potential Vf2 at electrodes 2 is 

 
Likewise, the floating potential at electrode (3) can be obtained and 

 
The resistivity then becomes 

 

 
Where resistivity ρ0 is computable from (2 and 3) can be used if the point spacing are 

different, but approximately equal. The function G6 (W/S) is computed from 

 

which is tabulated in Table I and plotted in Fig. 10. 
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4. MEASUREMENT OF DIELECTRIC CONSTANT OF A DIELEC-
TRIC MATERIALS  

 
Objective: To measure the dielectric constant of a dielectric material  

 

Dielectric Materials 

Dielectrics are non-conducting substances which are the insulating materials and are bad 
conductor of electric current. Dielectric materials can be made to hold an electrostatic charge 
while dissipating minimal energy in the form of heat. Examples of Dielectric are Mica, 
Plastics, Glass, Porcelain and Various Metal Oxides and even dry air is also example of 
dielectric. 

Dielectric Constant 

In parallel plate capacitor, when dielectric slab is placed between the two plates then the 
ratio of the applied electric field strength to the strength of the reduced value of electric field 
capacitor is called dielectric constant k. 

The larger the dielectric constant, the more charge can be stored. Completely filling the 
space between capacitor plates with a dielectric increases the capacitance by a factor of the 
dielectric constant: 

C = kC0, where C0 is the capacitance with no dielectric between the plates. 

Dielectric constant, k, is given by  

࢑ = 1 +
ଵܥ − ଶܥ
଴ܥ

 

C0 = Capacity of test capacitor without dielectric (it is given) 

C1 = Capacity of variable air capacitor for maximum deflection in microammeter when test 
capacitor is without dielectric. 

C2 = Capacity of variable air capacitor for maximum deflection in microammeter when test 
capacitor is filled with dielectric. 

C0 
Gap between plates 

in mm 
Capacitance 

in PF 
3 38 
4 28 
7 23 
8 20 

11 18 
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Experimental Procedure 

1. Connect the “Variable Capacitor” at the R.F.Oscillator terminals and set it at 

minimum position. Set the sensitivity of the meter at mid. position by adjusting the 

sensitivity knob. 

2. Now connect the “Test Capacitor” to second terminals. 

3. Keep test capacitor without dielectric and increase the variable capacitor C1 at 

minimum position to the maximum position and observe where get maximum 

deflection at meter. Do it 2 or 3 times to get accurate result. Note the capacitance C1. 

4. Now fill the dielectric to the test capacitor. Again vary the capacitance of the variable 

capacitor same way and Note the capacitance C2. 

 

 

 

Sl. 
No. 

Gap between 
plates 

in mm 

Capacitance 
C0  

in PF 

(From Chart) 

Capacitance 
without 

dielectric 
C1 

in PF 

Capacitance 
with 

dielectric 
C2 

in PF 

Dielectric 
constant 

࢑ = 1 +
ଵܥ − ଶܥ
଴ܥ
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Experimental setup for Measurement of the “Dielectric Constant” of a Substance by 
Resonance Method 

 
Reference:  
Microtech  Industries 14a/1g, Ultadanga Road. Gopal Bhavan, Kolkata 700 004.  Mobile 
no. 9831263293, E mail : microtekindustries90@gmail.com, 
microtechi@rediffmail.com, Website :www.microtekindustries.com 

 
 

 
 

TEST CAPACITOR 

DIELECTRIC  
METERIAL 

(Backelite Sheet) 
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5. TO DETERMINE THE HALL COEFFICIENT OF A 
SEMICONDUCTOR SAMPLE 

Objective: 
i) To determine the Hall coefficient (R) 
ii) To determine the carrier density (n) of charge carrier 
iii) To determine the carrier mobility (µ)  

of a given semiconductor 
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Introduction: 

The conductivity measurements cannot reveal whether one or types of carriers are present; 

nor distinguish between them. However, this information can be obtained from Hall Effect 

measurements, which are basic tools for the determination of mobilities. The effect was 

discovered by E.H. Hall in 1879. 

 

Theory: 

As you are undoubtedly aware, a static magnetic field has no effect on charges unless they 

are in motion. When the charges flow, a magnetic field directed perpendicular to the direction 

of flow produces a mutually perpendicular force on the charges. When this happens, electrons 

and holes will be separated by opposite forces. They will in turn produce an electric field (Eh) 

which depends on the cross product of the magnetic intensity,  H , and the current density,  J 

. The situation is demonstrated in Fig. 1. 

 
Where R is called the Hall coefficient.  

Now, let us consider a bar of semiconductor, having dimension, x, y and z. Let J is directed 

along X and H along Z then Eh will be along Y, as in Fig. 2. 

Then we could write, 

 
Where Vh is the Hall voltage appearing between the two surfaces perpendicular to y and I = 
Jyz  
In general, the Hall voltage is not a linear function of magnetic field applied, i.e. the Hall 

coefficient is not generally a constant, but a function of the applied magnetic field. 

Consequently, interpretation of the Hall Voltage is not usually a simple matter. However, it is 

easy to calculate this (Hall) voltage if it is assumed that all carriers have the same drift 

velocity. We will do this in two steps (a) by assuming that carriers of only one type are 

present, and (b) by assuming that carriers of both types are present. 

 
a) One type of Carrier 

Metals and degenerate (doped) semiconductors are the examples of this type where one 

carrier dominates. 
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REFERENCE 
 

SES instruments pvt. Ltd. (www.sestechno.com) 
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6. STUDY OF MAGNETIC HYSTERESIS IN FERROMAGNETIC 

MATERIAL 

Objective:  
To study the magnetic hysteresis loop for a ring shaped massive iron core.  

Theory:  
Magnetism in matter: The magnetic state of a material can be described by a vector  ⃗ called 

magnetization, or dipolar magnetic moment per unit volume. In vacuum, the magnetic 

induction ⃗ܤand the applied magnetic field intensity, ⃗ܪ, are connected by the 

equation: 

 
where  0= 410−7*ߨ Hm-1, is the absolute magnetic permeability of vacuum. However, in a 

matter, magnetic induction depends on magnetization ⃗ܯin the following way: 

 
There is another important parameter called the magnetic susceptibility,  ߯, which is a 

measure of the quality of the magnetic material and defined as the magnetization produced 

per unit applied magnetic field, i.e., 

 
 

Magnetism in solids is broadly classified into 3 categories: diamagnetism, paramagnetism 

and ferromagnetism.  

Diamagnetism: Diamagnetism is a very weak effect observed in solids having no permanent 

magnetic moments. It arises due to changes in the atomic orbital states induced by the applied 

magnetic field. It exists in all materials but usually suppressed by other stronger effects such 

as para- or ferromagnetism. For diamagnetic materials, magnetization ⃗ܯvaries linearly with 

  .in opposite direction. Hence ߯< 0. Diamagnetism is temperature independent⃗ܪ

Paramagnetism: Paramagnetism is also a weak effect, but unlike diamagnetism, the 

magnetic moment is aligned along the direction of applied magnetic field. Certain atoms and 

ions (oxygen, air, iron salts, etc.) have a permanent magnetic moment of their own. Without 

applied magnetic field, these are oriented randomly. Therefore they don’t show any 

magnetization on a macroscopic scale. On applying an external magnetic field, a non-zero 

macroscopic magnetic moment ⃗ܯarises since all the magnetic momenta are aligned along 
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the applied field. The magnetization  ⃗initially varies linearly with  ⃗ܪand then saturates at a 

value Ms, called saturation magnetization. This saturation condition corresponds to the 

complete alignment of the magnetic dipoles along the applied field direction. However, once 

the applied field is removed, thermal agitation in the material is enough to disorient the 

atoms. Paramagnetic materials have a small, positive ߯. Paramgnetism is temperature 

dependent. 

Ferromagnetism: Ferromagnetism is associated with the presence of permanent magnetic 

dipoles where the magnetic momenta of adjacent atoms are aligned in a particular direction, 

even in the absence of an external magnetic field. This is known as spontaneous 

magnetization. A ferromagnetic material contains a number of small regions called domains, 

which are having spontaneous magnetization values of different magnitude. On application of 

an external magnetic field ⃗ܪ, these domains align in the direction of ⃗ܪand develop a strong 

macroscopic magnetization ⃗ܯ. The value of ߯for a ferromagnetic material is large and 

positive. Ferromagnetism is temperature dependent as it exists below a certain temperature 

known as Curie temperature TC. Some examples of ferromagnetic materials are iron, cobalt 

and nickel. 

 
 

Hysteresis: Hysteresis loop (Fig. 1) shows the relation between the magnetization ⃗ܯor the 

magnetic induction ⃗ܤas a function of ⃗ܪ. It is a characteristic property of any ferromagnetic 

material. The dotted line in Fig. 1 shows that as the applied field is increased the 

magnetization in the domains grows along the so-called easy direction of magnetization and 
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finally attains a saturation value at BS. At this point all the domains point along the direction 

of applied magnetic field. On decreasing the field, B is not reversible and possesses a non-

zero value called remanent induction, Br. It can be reduced to zero by applying a reverse 

magnetic field known as coercive magnetic field or coercivity, HC. A similar variation is 

observed as the reverse field is varied resulting in a closed loop known as hysteresis loop. 

 
 

Degaussing:  

Degaussing is the process of decreasing or eliminating a remnant magnetic field present in a 

ferromagnetic material due to hysteresis. Annealing, hammering or applying a rapidly 

oscillating magnetic field (Fig. 2) are some of the methods of degaussing which tend to 

release the domain walls from their pinned state, and the domain boundaries tend to move 

back to a lower energy configuration. 

 

Apparatus:  
1.  Iron core  

2.  Pair of coils (600 turns each, current limit 2A)  

3.  DC power supply  
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4.  Digital gauss meter (DGM) with hall probe  

5.  Reversible switch  

6.  Connecting wires 

Experimental set up: 

 
Fig. 3: Experimental set up 

 

Procedure:  
1. Connect the power supply to the coils through the reversible switch and place the 

Gauss meter near to the magnet as shown in Fig. 3. The power supply should be in 

constant current (CC) mode.  

2. Make sure that the sample is demagnetized. (How?)  

3. Using zero adjustment knob, set the reading of the digital gauss meter at the best 

possible minimum value, Boffset.  

4. With no current flowing in the circuit (power supply is OFF), note the reading of the 

DGM.  

5. Switch on the power supply. Very slowly increase the current value (I) in steps of 

0.1A up to 2A and record the corresponding readings from DGM after subtracting 

Boffset.  DO NOT exceed the current value above 2A and AVOID 2A current flow in 

the coil for longer period to avoid damage to the coil. 

6. Repeat the above step by varying the current from 2A to 0, 0 to -2A, -2A to 0 and 



 

64 
 

then again 0 – 2A to complete the loop. Use the reversible key for reversing the 

polarity of current.  

7. Calculate the value of H corresponding to each current using the formula   

      H = (n/L).I.  

Where n= Number of turns in the coil = 600 L= Average field line length for the 

sample = 232 mm (as provided by manufacturer) 

8. Plot the hysteresis loop (B ~ H).  

9. To degauss the magnetized iron core, apply 2A current first and note down the value 

on DGM. Reduce the current to 0 and record the value (Remanence, Br) on DGM. 

Now, switch the polarity of current and set its value at less than 2A (say 1.7A). 

Record the corresponding value of B. Bring the current back to 0 and note the value 

of Br again. 

10. Repeat the above step by applying positive and negative field alternately to get 

gradually lower values of B. Record the value of Br each time. Continue this step till 

you get Br ≈0 which means the iron core is demagnetized. 

 

Table: 1 Data for Hysteresis curve 

Sl. # Current I (A) H (A/m) B (Gauss) 

    

    

    

    

 

Table: 2 Degaussing 

Sl. # Current (A) B (Gauss) Br (at I=0) 

    

    

    

 

Observations: 
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Graph:  
Plot B-H curve.  

Plot B - |Br| 

 

 

Results:  
Determine values of coercivity, remanence, saturation magnetization and hysteresis loss from 

graph. 

 

Conclusions: 

 

Precautions: 
Avoid flow of large current in the coils for prolonged time. 

 

Reference: 
1.  C. Kittel, Introduction to Solid State Physics  

2.  Manual by supplier 


