

1

2

INSTRUCTIONS TO STUDENTS

• Before entering the lab, the student should carry the following things

(MANDATORY)

1. Identity card issued by the college.

2. Class notes

3. Lab observation book

4. Lab Manual

5. Lab Record

• Student must sign in and sign out in the register provided when attending

the lab sessionwithout fail.

• Come to the laboratory in time. Students, who are late more than 10

min., will not beallowed to attend the lab.

• Students need to maintain 80% attendance in lab if not a strict action will be
taken.

• All students must follow a Dress Code while in the laboratory

• Foods, drinks are NOT allowed.

• All bags must be left at the indicated place.

• Refer to the lab staff if you need any help in using the lab.

• Respect the laboratory and its other users.

• Workspace must be kept clean and tidy after experiment is completed.

• Read the Manual carefully before coming to the laboratory and be sure

about what youare supposed to do.

• Do the experiments as per the instructions given in the manual.

• Copy all the programs to observation which are taught in class before

attending the labsession.

• Students are not supposed to use floppy disks, pen drives without

permission of lab- incharge.

• Lab records need to be submitted on or before the date of submission.

3

DIGITAL ELECTRONICS

LABORATORY MAUAL

(Course Code: COSHMJ102P)

4

CONTENTS

Experiment No

1. Verification of Gates

2. Half/Full Adder/Subtractor

3. Parallel Adder/Subtractor

4. Excess-3 to BCD & Vice Versa

5. Binary-Grey & Grey-Binary Converter

6. MUX/DEMUX

7. MUX/DEMUX using only NAND Gates

8. Comparators

9. Encoder/Decoder

10. Flip-Flops

11. Counters

12. Shift Registers

13. Johnson/Ring Counters

14. Sequence Generator

15. Multivibrators

16. Static RAM

5

2-Input AND Gate 7408LS

2-Input OR Gate 7432LS

2-Input NAND Gate 7400LS

A O/P
Y1

(V)

Y2

(V)

Y3

(V)

Y4

(V)

Y5

(V)

Y6

(v)

0 1

1 0

A B O/P Y1

(V)

Y2

(V)

Y3

(V)

Y4

(V)

0 0 0

0 1 0

1 0 0

1 1 1

A B O/P
Y1

(V)

Y2

(V)

Y3

(V)

Y4

(V)

0 0 0

0 1 0

1 0 0

1 1 1

6

VERIFICATION OF GATES

Aim: - To study and verify the truth table of logic gates

Apparatus Required: -

All the basic gates mention in the fig.

Procedure: -

1. Place the IC-on-IC Trainer Kit.

2. Connect VCC and ground to respective pins of IC Trainer Kit.

3. Connect the inputs to the input switches provided in the IC

Trainer Kit.

4. Connect the outputs to the switches of O/P LEDs,

5. Apply various combinations of inputs according to the truth

table and observe condition of LEDs.

6. Disconnect output from the LEDs and note down the

corresponding multimeter voltage readings for various

combinations of inputs.

A B O/P Y1

(V)

Y2

(V)

Y3

(V)

Y4

(V)

0 0 1

0 1 0

1 0 0

1 1 0

7

42

8

2-Input NOR Gate 7402LS

2 Input EX-OR Gate 7486LS

3 Input NAND Gate 7410LS

2-Input NAND Gate CD4011

A B O/P
Y1

(V)

Y2

(V)

Y3

(V)

Y4

(V)

0 0 1

0 1 0

1 0 0

1 1 0

A B O/P
Y1

(V)

Y2

(V)

Y3

(V)

Y4

(V)

0 0 0

0 1 1

1 0 1

1 1 0

A B C O/P
Y1

(V)

Y2

(V)

Y3

(V)

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

9

43

10

2-Input NOR Gate € CD4001

4-Input NAND Gate 7420LS

A B O/P
Y1

(V)

Y2

(V)

Y3

(V)

Y4

(V)

0 0 1

0 1 1

1 0 1

1 1 0

A B O/P
Y1

(V)

Y2

(V)

Y3

(V)

Y4

(V)

0 0 1

0 1 0

1 0 0

1 1 0

11

44

12

Half Adder using basic gates:-

Full Adder using basic gates:-

A B C D O/P
Y1

(V)

Y2

(V)

Y3

(V)

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

13

45

14

Half Adder using NAND gates only:-

Full Adder using NAND gates only:-

15

46

16

Experiment No: Date: / /

HALF/FULL ADDER & HALF/FULL SUBTRACTOR

Aim: - To realize half/full adder and half/full subtractor.

i. Using X-OR and basic gates

i. Using only nand gates.

Apparatus Required: -

IC 7486, IC 7432, IC 74 08, IC 7400, etc.

Procedure: -

1. Verify the gates.

2. Make the connections as per the circuit diagram.

3. Switch on VCC and apply various combinations of input according
to the truth table.

4. Note down the output readings for half/full adder and half/full
subtractor sum/difference and the carry/borrow bit for different
combinations of inputs.

17

47

18

Using X – OR and Basic Gates (a)Half Subtractor

Full Subtractor

(i) Using only NAND gates (a) Half subtractor

(b) Full Subtractor

19

48

20

Half Adder

A B S C S(V) C(V)

 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Half Subtractor

A B D B D(V) B(V)

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

Full Adder

A B Cn-1 S C S(V) C(V)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Full Subtractor

A B Cn-1 D B D(v) B(v)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

21

49

22

Adder : -

Truth Table: -

A3 A2 A1 A0 B3 B2 B1 B0 C4 (V) S3(V) S2(V) S1(V) S0(V)

0 0 0 1 0 0 1 0 0 0 0 1 1

0 1 0 1 1 0 1 1 1 1 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 0 0 1 1 0 1 0 1 0

Subtractor:-

23

50

24

Experiment No: Date: / /

PARALLEL ADDER AND SUBTRACTOR USING 7483

Aim: - To realize IC7483 as parallel adder / Subtractor.

Apparatus Required: -

IC 7483, IC 7404, etc.

Procedure: -

1. Apply the inputs to A0 to A3 and B0 to B3.

2. Connect C0 to the Ground.

3. Check the output sum on the S0 to S3 and also C4.

4. For subtraction connect C0 to Vcc, Apply the B input through
NOT gate, which gives the complement of B.

5. The truth table of adder and Subtractor are noted down.

Truth Table for Subtractor

A3 A2 A1 A0 B3 B2 B1 B0 C4(V) S3(V) S2(V) S1(V) S0(V)

0 0 1 0 0 0 0 1 1 0 0 0 1

0 1 0 1 0 0 1 1 1 0 0 1 0

0 0 1 1 0 1 0 1 0 1 1 1 0

1 0 1 0 0 1 1 0 1 0 1 0 0

1 0 0 0 1 1 1 1 0 1 0 0 1

1 0 1 0 0 1 1 0 1 0 1 0 0

1 0 0 0 1 1 1 1 0 1 0 0 1

25

51

26

BCD To Excess-3

Truth Table For Code Conversion: -

Inputs Outputs

B3 B2 B1 B0 E3 (v) E2 (v) E1 (v) E0 (v)

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

27

52

28

Experiment No: Date: / /

BCD to Excess 3 AND Excess 3 to BCD

Aim: - To verify BCD to excess –3 code conversion using NAND gates. To study and

verify the truth table of excess-3 to BCD code converter

Apparatus Required: -

IC 7400, IC 7404, etc.

Procedure: - (BCD Excess 3 and Vice Versa)

1. Make the connections as shown in the fig.

2. Pin [14] of all IC’S are connected to +5V and pin [7] to the ground.

3. The inputs are applied at E3, E2, E1, and E0 and the

corresponding outputs at B3, B2, B1, and B0 are taken for

excess – 3 to BCD.

4. B3, B2, B1, and B0 are the inputs, and the corresponding

outputs are E3, E2, E1 and E0 for BCD to excess – 3.

5. Repeat the same procedure for other combinations of inputs.

6. Truth table is written.

29

53

30

Excess-3 To BCD :-

Truth Table For Code Conversion: -
 Inputs Outputs

E3 E2 E1 E0 B3 (v) B2 (v) B1 (v) B0(v)

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 1

0 1 0 1 0 0 1 0

0 1 1 0 0 0 1 1

0 1 1 1 0 1 0 0

1 0 0 0 0 1 0 1

1 0 0 1 0 1 1 0

1 0 1 0 0 1 1 1

1 0 1 1 1 0 0 0

1 1 0 0 1 0 0 1

31

54

32

Exercise: -

1. Obtain the expression for E3, E2, E1 and E0

2. Obtain the expression for B3, B2, B1 and B0

33

55

34

Circuit Diagram: -

Binary To Gray Gray To Binary

Truth Table For Both: -

Inputs Outputs

B3 B2 B1 B0 G3 (V) G2 (V) G1 (V) G0 (V)

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

35

56

36

Experiment No: Date: / /

BINARY TO GRAY AND GRAY TO BINARY

CONVERSION

Aim: - To convert given binary numbers to gray codes.

Apparatus Required: -

IC 7486, etc

Procedure: -

1. The circuit connections are made as shown in fig.

2. Pin (14) is connected to +Vcc and Pin (7) to ground.

3. In the case of binary to gray conver sion, the inputs B0, B1, B2

and B3 are given at respective pins and outputs G0, G1, G2, G3

are taken for all the 16 combinations of the input.

4. In the case of gray to binary conver sion, the inputs G0, G1, G2 and

G3 are given at respective pins and outputs B0, B1, B2, and B3

are taken for all

the 16 combinations of inputs.

5. The values of the outputs are tabulated.

37

57

38

Using Nand Gates
Only: - Binary To Gra

39

58

40

Gray Code

41

59

42

Truth Table For Both: -

Inputs Outputs

B3 B2 B1 B0 G3 (V) G2 (V) G1 (V) G0 (V)

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

43

60

44

Pin Details: -

Truth Table: -

CHANNEL – A

INPUTS SELECT

LINES

O/P

Ēa Ioa I1a I2a I3a S1 S2 Za(v)

1 X X X X X X 0

0 0 X X X 0 0 0

0 1 X X X 0 0 1

0 X 0 X X 0 1 0

0 X 1 X X 0 1 1

0 X X 0 X 1 0 0

0 X X 1 X 1 0 1

0 X X X 0 1 1 0

0 X X X 1 1 1 1

CHANNEL – B

INPUTS SELECT

LINES

O/P

Ēa Iob I1b I2b I3b S1 S2 Za(v)

1 X X X X X X 0

0 0 X X X 0 0 0

0 1 X X X 0 0 1

0 X 0 X X 0 1 0

0 X 1 X X 0 1 1

0 X X 0 X 1 0 0

0 X X 1 X 1 0 1

0 X X X 0 1 1 0

0 X X X 1 1 1 1

45

61

46

Experiment No: Date: / /

MUX/DEMUX USING 74153 & 74139

Aim: - To verify the truth table of multiplexer using 74153 & to verify a

demultiplexer using 74139. To study the arithmetic circuits half-adder half

Subtractor, full adder and full Subtractor using multiplexer.

Apparatus Required: -

IC 74153, IC 74139, IC 7404, etc.

Procedure: - (IC 74153)

1. The Pin [16] is connected to + Vcc.

2. Pin [8] is connected to ground.

3. The inputs are applied either to ‘A’ input or ‘B’ input.

4. If MUX ‘A’ has to be initialized, Ea is made low and if MUX ‘B’ has

to be initialized, Eb is made low.

5. Based on the selection lines one of the inputs will be selected at

the output and thus the truth table is verified.

6. In case of half adder using MUX, sum and carry is obtained by

applying a constant inputs at I0a, I1a, I 2a, I 3a and I 0b, I 1b, I 2b and I3b and

the corresponding values of select lines are changed as per table and

the output is taken at Z0a as sum and Z0b as carry.

7. In this case, the channels A and B are kept at constant inputs

according to the table and the inputs A and B are varied. Making

Ea and Eb zero and the output is taken at Za, and Zb.

8. In full adder using MUX, the input is applied at Cn-1, An and Bn.

According to the table corresponding outputs are taken at Cn and Dn.

62

47

Half Adder Using 74153 – Half Subtractor: -

Full Adder Using 74153: - Full Subtractor Using 74153: -

48

63

49

Truth Tables: - Same for both Subtractor and adder
 Full Adder/subtractro

An Bn Cn-1 Sn/Dn (V) Cn/Bn (V)

 Half adder/subtractor 0 0 0

 A B Sn/Dn (V) Cn/Bn (V) 0 0 1

 0 0 0 1 0

 0 1 0 1 1

 1 0 1 0 0

 1 1 1 0 1

 1 1 0

1 1 1

50

64

51

Pin Details: -

Truth Table For Demux: -

Procedure: - (IC 74139)

1. The inputs are applied to either ‘a’ input or ‘b’ input

2. The demux is activated by making Ea low and Eb low.

3. The truth table is verified.

CHANNEL – A

Inputs Outputs

Ēa S1a S0a Y0a Y1a Y2a Y3a

1 X X 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

CHANNEL – B

Inputs Outputs

Ēb S1b S0b Y0b Y1b Y2b Y3b

1 X X 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

52

65

53

Half adder

Half subtractor:-

Exercise:-

• Repeat the experiment to verify

ChannelB. Full Adder using IC 74139:-

Half Adder

A B Sn (V) Cn (V)

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Half Subtractor

A B Dn (V) Bn (V)

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

54

66

55

Full subtractor using IC 74139:-

Truth Tables:-

 Full Adder

An Bn Cn-1 Sn (V) Cn (V)

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Full Subtractor

An Bn Cn-1 Dn (V) Bn (V)

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

56

67

57

MUX USING NAND GATES ONLY: -

DEMUX USING NAND GATES ONLY: -

58

68

59

Experiment No: DATE: / /

MUX AND DEMUX USING NAND GATES

AIM: - To verify the truth table of MUX and DEMUX using NAND.

APPARATUS REQUIRED: -

IC 7400, IC 7410, IC 7420, etc.

PROCEDURE: -

1. Connections are made as shown in the Circuit diagram.

2. Change the values of the inputs as per the truth table and

note down the outputs readings using multimeter.

TRUTH TABLES: -

INPUT OUPUT

A B I0 I1 I2 I3 Y (V)

0 0 0 X X X 0

0 0 1 X X X 1

0 1 X 0 X X 0

0 1 X 1 X X 1

1 0 X X 0 X 0

1 0 X X 1 X 1

1 1 X X X 0 0

1 1 X X X 1 1

INPUT OUPUT

Ē A B Y0 (V) Y1 (V) Y2 () Y3 (V)

1 X X 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

60

69

61

One Bit Comparator: -

Two Bit Comparator: -

Two-Bit Comparator: -
 A1 A0 B1 B0 Y1 (A > B) Y2 (A = B) Y3 (A < B)

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

A B
Y1

(A>B)

Y2

(A = B)

Y3

(A < B)

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

62

70

63

Experiment No: Date: / /

COMPARATORS

Aim: - To verify the truth t able of one bit and two bit comparators using logic gates.

Apparatus Required: -

IC 7486, IC 7404, IC 7408, et c.

Procedure: -

1. Verify the gates.

2. Make the connections as per the circuit diagram.

3. Switch on Vcc.

4. Applying i/p and Check for the outputs.

5. The voltameter readings ofoutputs are taken and tabulated

in tabular column.

6. The o/p are verified.

64

71

65

2- bit Comparator

Tabular Coloumn For 8-Bit Comparator: -

A3 B3 A2 B2 A1 B1 A0 B0 A>B A=B A<B A>B A=B A<B

A3>B3 X X X X X X

A3<B3 X X X X X X

A3=B3 A2>B2 X X X X X

A3=B3 A2<B2 X X X X X

A3=B3 A2=B2 A1>B1 X X X X

A3=B3 A2=B2 A1<B1 X X X X

A3=B3 A2=B2 A1=B1 A0>B0 X X X

A3=B3 A2=B2 A1=B1 A0<B0 X X X

A3=B3 A2=B2 A1=B1 A0=B0 1 0 0

A3=B3 A2=B2 A1=B1 A0=B0 0 1 0

A3=B3 A2=B2 A1=B1 A0=B0 0 0 1

66

72

67

8- Bit Comparator: -
LSB MSB

Exercise:-

• Write the truth table for 8-bit comparator and verify the

same for the above circuit.

68

73

69

PIN DETAILS:-

TRUTH TABLE:-

En A B C D E F G H Q2(V) Q1(V) Q0(V) ES(V) EO(V)

1 X X X X X X X X 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1 0 1

0 X 0 1 1 1 1 1 1 1 1 0 0 1

0 0 X 0 1 1 1 1 1 1 0 1 0 1

0 0 0 X 0 1 1 1 1 1 0 0 0 1

0 0 0 0 X 0 1 1 1 0 1 1 0 1

0 0 0 0 0 X 0 1 1 0 1 0 0 1

0 0 0 0 0 0 X 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 1 1 1 1 1 1 1 1 1 1 1 0

70

74

71

Experiment No: DATE: / /

ENCODER & DECODER

AIM:-To convert a given octal input to the binary output and to study the LED

display using 7447 7-segment decoder/ driver.

APPARATUS REQUIRED: -

IC 74148, IC 7447, 7-segment display, etc.

PROCEDURE: - (Encoder)

1. Connections are made as per circuit diagram.

2. The octal inputs are given at the corresponding pins.

3. The outputs are verified at the corresponding output pins.

PROCEDURE: - (Decoder)

1. Connections are made as per the circuit diagram.

2. Connect the pins of IC 7447 to the respective pins of the LED display
board.

3. Give different combinations of the inputs and observe the decimal

numbers displayed on the board.

RESULT: -

The given octal numbers are converted into binary

numbers. The given data is displayed using &-segment

LED decoder.

72

75

73

TABULAR COLUMN:-

Q4 Q3 Q2 Q1 O/P Display Glowing LEDs

0 0 0 0 0

a,b,c,d,e,f

0 0 0 1 1

b,c

0 0 1 0 2

a,b,d,e,g

0 0 1 1 3

a,b,c,d,g

0 1 0 0 4

b,c,f,g

0 1 0 1 5

a,c,d,f,g

0 1 1 0 6

a.c.d.e.f.g

0 1 1 1 7

a.b.c

1 0 0 0 8

a,b,c,d,e,f,g

1 0 0 1 9

a,b,c,d,f,g

1 0 1 0 10

d,e,g

1 0 1 1 11

c,d,g

1 1 0 0 12

 c,d,e

1 1 0 1 13

a,g,d

1 1 1 0 14

d,e,f,g

1 1 1 1 15

blank

74

76

75

PIN DETAILS:-

DISPLAY:-

Conclusion:-

76

77

77

Circuit Diagram: - (Mas ter Slave JK Flip-Flop)

D Flip-Flop:-

78

78

79

T-Flip Flop

80

79

81

Experiment No: Date: / /

FLIP-FLOP

Aim:- Truth table verification of Flip-Flops : (i) JK Master Slave
(ii) D- Type
(iii) T- Type.

Apparatus Required: -
IC 7410, IC 7400, etc.

Procedure: -

1. Connections are made as per circuit diagram.
2. The truth table is verified for various combinations of inputs.

Truth Table:- (Master Slave JK Flip-Flop)

Preset Clear J K Clock Qn+1

Qn◻
1

0 1 X X X 1 0 Set

1 0 X X X 0 1 Reset

1 1 0 0

 Qn

Qn No Change

1 1 0 1

0 1 Reset

1 1 1 0

 1 0 Set

1 1 1 1

Qn Qn Toggle

D Flip-Flop:-

Preset Clear D Clock Qn+1

Qn◻
1

1 1 0

 0 1

1 1 1

 1 0

T Flip-Flop:-

Preset Clear T Clock Qn+1

Qn◻1

1 1 0

 Qn

Qn

1 1 1

Qn Qn

Exercise:-

• Write the timing diagrams for all the above Flip-Flops

82

80

83

Pin Details: - Truth Table:-

Timing Diagram:-

Circuit Diagram: - 3-Bit Asynchronous Up Counter

 Clock QC QB QA

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

84

81

85

3-bit Asynchronous

up counter

Clock QC QB QA

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 0 0 0

86

82

87

Experiment
No: Date: / /

COUNTERS

Aim:- Realization of 3-bit counters as a sequential circuit and Mod-N counter
design (7476, 7490, 74192, 74193).

Apparatus Required: -

IC 7408, IC 7476, IC 7 490, IC 74192, IC 74193, IC 7400, IC 7416, IC 7432

etc.

Procedure: -

1. Connections are made as per circuit diagram.

2. Clock pulses are applied one by one at the clock I/P and the O/P is

observed at QA, QB & QC for IC 7476.

3. Truth table is verified.

Procedure (IC 741 92, IC 74193):-

1. Connections are made as per the circuit diagram except the

connection from output of NAND gate to the load input.

2. The data (0011) = 3 is made available at the da ta i/ps A, B, C & D

respectively.

3. The load pin made low so that the data 0011 appears at QD, QC, QB

& QA respectively.

4. Now connect the output of the NAND gate to the load input.

5. Clock pulses are applied to “count up” pin and the truth table is
verified.

6. Now apply (1100) = 12 for 12 to 5 count er and remaining is same

as for 3 to 8 counter.

88

83

89

7. The pin diagram of IC 7419 2 is same as that of 74193. 74192 can

be configured to count between 0 and 9 in either direction. The

starting value can be any number between 0 and 9.

Circuit Diagram: - 3-Bit Asynchronous Down Counter

Mod 5 Asynchronous Counter: -

3-bit Asynchronous

down counter

Clock QC QB QA

0 1 1 1

1 1 1 0

2 1 0 1

3 1 0 0

4 0 1 1

5 0 1 0

6 0 0 1

7 0 0 0

8 1 1 1

9 1 1 0

90

84

91

MOD 5 Asynchronous

counter

Clock QC QB QA

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 0 0 0

MOD 3 Asynchronous Counter:-

Mod 3 Asynchronous

counter

Clock QC QB QA

0 0 0 0

1 0 0 1

2 0 1 0

3 0 0 0

4 0 0 1

5 0 1 0

92

85

93

3- bit Synchronous Counter:-

IC 7490 (Decade Counter):-

IC 7490 (MOD-8 Counter):-

Clock QD QC QB QA

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 0 0 0 0

94

86

95

Circuit Diagram (IC 74193) To Count from 3 to 8:-

Clock QD QC QB QA
Count in

Decimal

0 0 0 1 1 3

1 0 1 0 0 4

2 0 1 0 1 5

3 0 1 1 0 6

4 0 1 1 1 7

5 1 0 0 0 8

6 0 0 1 1 3

7 repeats 4

Clock QD QC QB QA

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 0 0 0 0

9 0 0 0 1

96

87

97

Circuit Diagram (IC 74193) To Count from 8 to 3:-

Function Table for 7490:-

Clock R1 R2 S1 S2 QD QC QB QA

X H H L X L L L L RESET

X H H X L L L L L RESET

X X X H H H L L H
SET

TO 9

 X L X L COUNT

 L X L X COUNT

 L X X L COUNT

 X L L X COUNT

4 I/P OR Gate can be realized as follows:-

Circuit Diagram: - Shift Left

Clock QD QC QB QA
Count in

Decimal

0 0 1 0 1 5

1 0 1 1 0 6

2 0 1 1 1 7

3 1 0 0 0 8

4 1 0 0 1 9

5 1 0 1 0 10

6 1 0 1 1 11

7 1 1 0 0 12

8 0 1 0 1 5

9 repeats 6

98

88

99

SIPO (Right Shift):-

SISO:-

Clock Serial i/p QA QB QC QD

1 1 X X X 1

2 0 X X 1 0

3 1 X 1 0 1

4 1 1 0 1 1

Clock Serial i/p QA QB QC QD

1 0 0 X X X

2 1 1 0 X X

3 1 1 1 0 X

4 1 1 1 1 0

Clock Serial i/p QA QB QC QD

1 do=0 0 X X X

2 d1=1 1 0 X X

3 d2=1 1 1 0 X

4 d3=1 1 1 1 0=do

5 X X 1 1 1=d1

6 X X X 1 1=d2

7 X X X X 1=d3

100

89

101

SHIFT REGISTERS

Aim: - Realization of 3-bit counters as a sequential circuit and Mod-N counter
design (7476, 7490, 74192, 74193).

Apparatus Required: -

IC 7495, etc.

Procedure: -

Serial In Parallel Out:-

1. Connections are made as per circuit diagram.

2. Apply the data at serial i/p

3. Apply one clock pulse at clock 1 (Right Shift) observe this data at
QA.

4. Apply the next data at serial i/p.

5. Apply one clock pulse at clock 2, observ e that the data on QA will
shift to QB and the new data applied will appear at QA.

6. Repeat steps 2 and 3 till all the 4 bits data are entered on e by
one into the shift register.

Serial In Serial Out:-

1. Connections are made as per circuit diagram.

2. Load the shift register with 4 bits of data one by one serially.

3. At the end of 4th clock pulse the first data ‘d0’ appears at QD.

4. Apply another clock pulse; the second data ‘d1’ appears at QD.

5. Apply another clock pulse; the third data appears at QD.

6. Application of next clock pulse will enable the 4 th data ‘d3’ to
appear at QD. Thus the data applied serially at the input comes
out serially at QD

102

90

103

PISO:-

Mode Clock Parallel i/p Parallel o/p

 A B C D QA QB QC QD

1 1 1 0 1 1 1 0 1 1

0 2 X X X X X 1 0 1

0 3 X X X X X X 1 0

0 4 X X X X X X X 1

PIPO:-

Clock Parallel i/p Parallel o/p

 A B C D QA QB QC QD

1 1 0 1 1 1 0 1 1

104

91

105

Parallel In Parallel Out:-

1. Connections are made as per circuit diagram.

2. Apply the 4 bit data at A, B, C and D.

3. Apply one clock pulse at Clock 2 (Note: Mode control M=1).

4. The 4 bit data at A, B, C and D appears at QA, QB, QC and QD
respectively.

Parallel In Serial Out:-

1. Connections are made as per circuit diagram.

2. Apply the desired 4 bit data at A, B, C and D.

3. Keeping the mode control M=1 apply one clock pulse. The data
applied at A, B, C and D will appear at QA, QB, QC and QD
respectively.

4. Now mode control M=0. Apply clock pulses one by one and
observe the data coming out serially at QD.

Left Shift:-

1. Connections are made as per circuit diagram.

2. Apply the first data at D and apply one clock pulse. This data
appears at QD.

3. Now the second data is made available at D and one clock pulse
applied. The data appears at QD to QC and the new data appears
at QD.

4. Step 3 is repeated until all the 4 bits are entered one by one.

5. At the end 4th clock pulse, the 4 bits are available at QA, QB, QC

and QD. Conclusion: -

106

92

107

Circuit Diagram: - Ring Counter

Johnson Counter:-

Mode Clock QA QB QC QD

1 1 1 0 0 0

0 2 0 1 0 0

0 3 0 0 1 0

0 4 0 0 0 1

0 5 1 0 0 0

0 6 repeats

Mode Clock QA QB QC QD

1 1 1 0 0 0

0 2 1 1 0 0

0 3 1 1 1 0

0 4 1 1 1 1

0 5 0 1 1 1

0 6 0 0 1 1

0 7 0 0 0 1

0 8 0 0 0 0

0 9 1 0 0 0

0 10 repeats

108

93

109

Experiment No: Date: / /

JOHNSON COUNTERS / RING COUNTER

Aim:- Design and testing of Ring counter/ Johnson counter.

Apparatus Required: -

IC 7495, IC 7404, etc.

Procedure: -

1. Connections are made as per the circuit diagram.

2. Apply the data 1000 at A, B, C and D respectively.

3. Keeping the mode M = 1, apply one clock pulse.

4. Now the mode M is made 0 and clock pulses are applied one by

one, and the truth table is verified.

5. Above procedure is repeated for Johnson counter also.

110

94

111

Circuit Diagram: - Sequence Generator

Truth Table:-

Map

Value
Clock QA QB QC QD o/p D

15 1 1 1 1 1 0

7 2 0 1 1 1 0

3 3 0 0 1 1 0

1 4 0 0 0 1 1

8 5 1 0 0 0 0

4 6 0 1 0 0 0

2 7 0 0 1 0 1

9 8 1 0 0 1 1

12 9 1 1 0 0 0

6 10 0 1 1 0 1

11 11 1 0 1 1 0

5 12 0 1 0 1 1

10 13 1 0 1 0 1

13 14 1 1 0 1 1

14 15 1 1 1 0 1

Karnaugh Map for D:-

QCQD

00

01

11

10

00 01 11 10
0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

QA QB

112

95

113

Experiment No: Date: / /

SEQUENCE GENERATOR

Aim:- Design of Sequence Generator.

Apparatus Required: -

IC 7495, IC 7486, etc.

Design:-

To generate a sequence of length S it is necessary to use at least N number of

Flip-Flops, which satisfies the condition S≤ 2N -1.

The given sequence length S = 15.

Therefore N = 4.

Note: - There is no guarantee that the given sequence can be generated by 4 f/fs.

If the sequence is not realizable by 4 f/fs then 5 f/fs must be used and so on.

Procedure: -

1. Connections are made as per the circuit diagram.

2. Clock pulses are applied one by one and truth table is verified.

Conclusion:-

114

96

115

Circuit Diagram: - Monostable Multivibrator

Waveform:-

116

97

WEB APPLICATION
LAB MANUAL

(PAPER CODE: COSSEC02P)

117

Introduction to HTML

Hyper Text Markup Language (HTML):

✓ The language used to develop web pages is called Hyper Text Markup Language

(HTML).

✓ HTML is a combination of both hypertext and markup language.

✓ HTML describes the structure of a Web page.

✓ HTML consists of a series of elements.

✓ HTML elements label pieces of content such as "this is a heading", "this is a

paragraph", "this is a link", etc.

✓ HTML is specified as TAGS in an HTML document (i.e., the Web page).

✓ HTML is the language interpreted by a Browser.

✓ HTML was created by Tim Berners-Lee in 1991. The first-ever version of HTML

was HTML 1.0, but the first standard version was HTML 2.0, published in 1995.

and the latest version is HTML 5. We can save HTML files with an extension

.html or .htm.

✓ Web Pages are also called HTML documents HTML is a set of special codes that

can be embedded in text to add formatting and linking information.

Hyper Text:

 Hyper Text simply means Text within Text. A text has a link within it, is a hypertext.

Whenever you click on a link which brings you to a new webpage, you have clicked

on a hypertext. Hyper Text is a way to link two or more web pages (HTML documents)

with each other.

Markup Language:

Markup Language is a language that is interpreted by the browser and it defines the

elements within a document using tags. It is human-readable, which means that

markup files use common words rather than the complicated syntax of programming

languages.

Web Page:

A web page is a document which is commonly written in HTML and translated by a

web browser. A web page can be identified by entering an URL. A Web page can be

of the static or dynamic type. With the help of HTML only, we can create static web

pages.

Elements and Tags:

HTML uses predefined tags and elements which tell the browser how to properly

display the content. Remember to include closing tags. If omitted, the browser applies

118

the effect of the opening tag until the end of the page.
Tag element

 Hello World

Opening tag Closing tag

HTML <html> Tag:

The <html> tag in HTML is used to define the root of HTML documents. The <html>

tag tells the browser that it is an HTML document. It is the second outer container for

everything that appears in an HTML document followed by the <!DOCTYPE> tag.

The <html> tag requires a starting and end tag.

Syntax: <html> HTML Contents... </html>

Example:

<!DOCTYPE html>

<!-- html tag starts here -->

<html>

<body>

<h1>Midnapore City College</h1>

<h2> <html>Tag</h2>

</body>

</html>

<!-- html tag ends here -->

HTML tags can be of two types:

Paired Tags:

A tag is said to be a paired tag if it, along with a companion tag, flanks the text. For

example, the tag is a paired tag. The tag with its companion tag causes

the text contained between them to be rendered in bold. The effect of other paired

tags is applied only to the text they contain.

In paired tags, the first tag () is often called the opening tag and the second tag

() is called the closing tag.

The opening tag activates the effect and the closing tag turns the effect off.

Singular Tags:

The second type of tag is the singular or stand-alone tag. A stand-alone tag does not

have a companion tag. For example,
 tag will insert a line break. This tag does

not require any companion tag.

Note: Some HTML elements have no content (like the
 element). These

119

elements are called empty elements. Empty elements do not have an end tag!

HTML Elements:

An HTML element is a collection of start and end tags with the content inserted in

between them.

Syntax: <tagname > Contents... </tagname>

HTML Element: The HTML element consists of 3 parts.

✓ Opening tag: It is used to tell the browser where the content material starts.

✓ Closing tag: It is used to tell the browser where the content material ends.

✓ Content: It is the actual content material inside the opening and closing tags.

Essential Tags

HTML contains four essential tags that form the basic structure of any webpage or

HTML file:

1. <html></html>

2. <head></head>

3. <title></title>

4. <body></body>

Now let us discuss each tag one by one:

1. <!DOCTYPE html>

It is also known as document type and should be included in an HTML file. It actually

tells the browser that this is an HTML document. It is not a tag or an element but it

is information.

Syntax: <!DOCTYPE html>

2. <html></html>

This tag marks the beginning and ending of the HTML document and whatever code

is present in between these tags totally gets considered by the browser. Also, it tells

the browser that the document is an HTML document. All the other tags in between

these tags only get considered by the browser.

Syntax: <html> Content </html>

3. <head></head>

This tag stores the data which actually doesn’t appear on the webpage but it gives

more information about the webpage. Or in other words, this tag is used to define the

120

head part of the document which contains the information related to the webpage. It

also contains tags like, <title>, <meta>, <link>, <style>, etc.

Syntax: <head> <title> Title of the Webpage </title></head>

4. <title> </title>

This tag stores the title/name of the web page. Whatever title/content is given in this

tag, the content appears on the tab when opened by the browser. It is described in the

head tag.

Syntax: <title> Title of the Webpage </title>

5. <body></body>

This tag is used to display all the information or data, i.e, text, images, hyperlinks

videos, etc., on the webpage to the user. Here, all the content like text, images,

hyperlinks videos, etc., are enclosed between this tag.

Syntax: <body> Content </body>

121

Some other HTML tags are:

1. <!-- comment -->

This tag is used to add comments in the HTML codes. These comments help the

program to understand the code. The content inside the comment tag doesn’t visible

on the browser.

Syntax: <!--Write comments here -->

2. <meta>

These meta tags are used inside the head tag and they making describe the metadata

i.e., data about data. These tags are useful in search engine optimization which means

when users search for our websites the chances that the browser recommends our

webpage becomes high which leads to an increase in traffic over the webpage. A

single HTML document can contain multiple tags.

Syntax: <meta attribute-name=”value”>

3. <link rel =”stylesheet” href= “file.css”>

122

This tag is used to include external style sheets. Use this tag when you don’t want to

include CSS in the HTML document. To make it more simple we make a CSS file

with the code and include this file in the link tag.

Syntax: <link rel =”stylesheet” href=”file.css “>

4. <script></script>

It is used for including javascript code. The external javascript can also be linked

using the src attribute in the opening script tag. It can be included in the head or body

tag.

Syntax: <script>script content</script>

5. Heading:

HTML provides six types of headings, i.e., H1, H2, H3, H4, H5, and H6. Here, H1 is

the highest-level heading and H6 is the lower-level heading. These headings are used

to highlight the important topics.

Syntax:

<h1> content </h1>

<h2> content </h2>

<h3> content </h3>

<h4> content </h4>

<h5> content </h5>

<h6> content </h6>

HTML Editors:

HTML editor is a software used for writing code in HTML, which is used for

structuring and creating websites. Even though codes can be written from scratch using

a normal text editor, HTML editors provide a great deal of ease to the developers by

ensuring hassle-free coding.

When you should use an HTML Editor?

123

✓ Developers prefer to use HTML editors when they want to have a full control

over their code and easily create their websites.

✓ HTML editors are of great importance to the users who don’t have much

knowledge of HTML, as of now, and also those who need to generate source

codes quickly.

✓ HTML editors are highly beneficial for the sake of convenience as they

successfully conceal and correct the developers’ part of minor errors by syntax

correction, auto-completion, simple editing, etc.

Advantages of using HTML Editors:

✓ They are of great benefit since they allow the users to easily check their syntax,

insert commonly used HTML tags and structures and also provide auto-

completion.

✓ The code generated through an HTML editor can be translated to other languages

such as XML, JavaScript, etc. For example-NVU editor provides this translation

functionality.

✓ Website development can be very exhausting and cumbersome. With the help of

online HTML editors, it is possible to create websites with ease and at a faster

rate.

✓ HTML editors provide full control to the developer, hence helping him to delve

deeper into the source code and find the hidden intricacies.

✓ HTML editors provide an amicable and aesthetic designing experience.

Types of HTML Editors:

There are broadly two types of HTML Editors:

▪ Textual HTML Editor

▪ WYSIWYG HTML Editor

1. Textual HTML Editor

These are text-based editors where the developers can write their codes and compile

them. The code appears in the same manner we write it, thus it requires basic

knowledge of HTML. Some of these editors also provide features of making a project,

managing all the files related to the web, etc.

Examples of HTML Text editors include-Notepad++, VSCode, Sublime Text.

2. WYSIWYG HTML Editor

https://data-flair.training/blogs/wp-content/uploads/sites/2/2020/06/Types-of-HTML-Editors.jpg
https://data-flair.training/blogs/wp-content/uploads/sites/2/2020/06/Types-of-HTML-Editors.jpg

124

‘What you see is what you get’ is its full form. WYSIWYG are editors that provide the

preview of the output of the source code i.e., as it would appear on a browser. There is

a drag and drop feature available in most of them that cases the handling. It does not

require any hardcore knowledge of HTML, thus enabling non-technical to easily

develop websites.

Examples include-Adobe Dreamweaver, Amaya, BlueGriffon, Visual Studio, Sublime

Text3 etc.

Deprecated Tags

Deprecated Tags:

The deprecated tags or attributes are those attributes which are replaced by some other

attributes. The tag or attributes deprecated when the same attributes is achieved by

some other way. They are considered outdated and may not be supported in modern

browsers or future versions of HTML.

HTML Deprecated Tag:

Complete list of deprecated tags are given below:

TAGS DESCRIPTION Alternate Tags

applet tag Specify an applet object tag

basefont tag Specify a basefont font style sheets

center tag Use to specify a centered Text text-align:center

dir tag Specify a directory list ul tag

embed tag Embed an application to HTML

document

object tag

font tag Used to specify font text, size and

color

font-family, font-size, color

isindex tag Specify a single-line input field form tag

menu tag Specify a menu list ul tag

plaintext tag Specify a plaintext pre tag

s tag Specify a strike through text text-decoration

strike tag Specify a strike through text text-decoration

u tag Specify underlined text text-decoration

xmp tag Specify preformatted text pre tag

HTML Deprecated Attributes: There are some attributes which are deprecated from

HTML4. Some of these attributes are given below:

Attribute Description Alternate

Attributes

hspace specify the horizontal space around

the element

padding attribute

125

align attribute Used to specify the positioning of an

element

text-align, vertical-

align

alink attribute Specify color for selected link active attribute

background

attribute

Specify background image background-image

bgcolor attribute Specify background color background-color

bgcolor attribute Specify background color background-color

border attribute Used to specify border width of an

element

border-width

height attribute Specify height of body tag padding attribute

language attribute Specify scripting language being used type attribute

link attribute Specify default color of links in the

document

link attribute

nowrap attribute Prevent the text from wrapping within

that table cell

white-space

vlink attribute Specify the color of visited links visited attribute

type attribute Specify the type of list in li tag list-style-type

vspace attribute Specify the amount of whitespace or

padding that should appear above or

below an element

padding attribute

Tags and Attributes

HTML Tags:

Tags are the starting and ending parts of an HTML element. They begin with <

symbol and end with > symbol. Whatever written inside < and > are called tags.

Example: <h1> </h1>

HTML elements:

Elements enclose the contents in between the tags. They consist of some kind of

structure or expression. It generally consists of a start tag, content and an end tag.

Where, is the starting tag and is the ending tag.

Example: <h2>This is the content. </h2>

HTML Attributes:

It is used to define the character of an HTML element. It always placed in the

opening tag of an element. It generally provides additional styling (attribute) to the

element.

Example: <p align="center">This is paragraph. </p>

HTML Tags HTML Elements HTML Attributes

HTML tags are used to

hold the HTML

element.

HTML element

holds the content.

HTML attributes are used

to describe the

characteristic of an HTML

126

HTML Tags HTML Elements HTML Attributes

element in detail.

HTML tag starts with

< and ends with >

Whatever written

within a HTML

tag are HTML

elements.

HTML attributes are found

only in the starting tag.

HTML tags are almost

like keywords where

every single tag has

unique meaning.

HTML elements

specifies the

general content.

HTML attributes specify

various additional

properties to the existing

HTML element.

Text Styles and Text Arrangements

In HTML, you can style text using various elements and CSS (Cascading Style Sheets)

properties. Here are some common text styles and arrangements in HTML:

Font Styles:
➢ and : Makes text bold.

▪ The HTML element defines bold text, without any extra importance.

Example This text is bold

▪ The HTML element defines text with strong importance. The

content inside is typically displayed in bold.

Example This text is strong

➢ <i> and : Renders text in italics.

▪ The HTML <i> element defines a part of text in an alternate voice or mood.

The content inside is typically displayed in italic.

Example <i>This text is italic</i>

▪ The HTML element defines emphasized text. The content inside is

typically displayed in italic.

127

Example This text is emphasized

➢ <u>: Underlines text.

▪ The <u> tag represents some text that is unarticulated and styled differently from

normal text, such as misspelled words or proper names in Chinese text. The

content inside is typically displayed with an underline.

Example <u>mispeled</u>

➢ <s>: Renders text with a strikethrough.

▪ The <s> tag specifies text that is no longer correct, accurate or relevant. The

text will be displayed with a line through it.

▪ The <s> tag should not be used to define deleted text in a document, use

the tag for that.

Example Mark up text that is no longer correct:

<p> <s>Only 50 tickets left! </s> </p>

<p>SOLD OUT! </p>

▪ The tag defines text that has been deleted from a document. Browsers

will usually strike a line through deleted text.

Example A text with a deleted part, and a new, inserted part:

<p>My favourite color is blue <ins>red</ins>!</p>

➢ <mark>: Highlights text.

▪ The <mark> tag defines text that should be marked or highlighted.

Example Highlight parts of a text:

<p>Do not forget to buy <mark>milk</mark> today.</p>

➢ <sub>: Displays text as subscript.

The <sub> tag defines subscript text. Subscript text appears half a character below the

normal line, and is sometimes rendered in a smaller font. Subscript text can be used

for chemical formulas, like H2O.

Example Subscript text:

<p>This text contains _{subscript} text.</p>

➢ <sup>: Displays text as superscript.

The <sup> tag defines superscript text. Superscript text appears half a character above

128

the normal line, and is sometimes rendered in a smaller font. Superscript text can be

used for footnotes, like WWW[1].

Example Superscript text:

<p>This text contains ^{superscript} text.</p>

➢ : A element which is used to color a part of a text:

▪ The tag is an inline container used to mark up a part of a text, or a

part of a document.

▪ The tag is easily styled by CSS or manipulated with JavaScript using

the class or id attribute.

Example: <p>My mother has blue eyes.

Text Alignment:

▪ CSS properties like text-align can be used to align text within an element.

▪ We can change the alignment of the text using the text-align property.

We can align the text in the center, Left, Right.

Property Description Values Example

text-

align

Specifies the

horizontal alignment

of text or block of text

left(Default)/right/center/justify text-align: right

Value Description

✓ left The text will align to the left

✓ right The text will align to the right

✓ center The text will align to the center

Example:

<h1 style="text-align:center;">Centered Heading</h1>

or

<h1 align="center"> Centered Heading </h1>

Font Properties:

▪ CSS properties like font-family, font-size, font-weight, and font-style can

be used to control the font of text.

Example: <p style="font-family: Arial; font-size: 16px; font-weight: bold; font-

style: italic;">Custom font styles</p>

129

Note: The tag was used in HTML 4 to specify the font face, font size, and color of text.

The tag in HTML plays an important role in the web page to create an

attractive and readable web page. The font tag is used to change the color, size, and

style of a text. The base font tag is used to set all the text to the same size, color and

face.

Syntax: Content

font Size: This attribute is used to adjust the size of the text in the HTML document

using a font tag with the size attribute. The range of size of the font in HTML is from

1 to 7 and the default size is 3.

Syntax:

Example: Midnapore City College

Font Type: Font type can be set by using face attribute with font tag in HTML

document. But the fonts used by the user need to be installed in the system first.

Syntax:

Example: <font size="2" face="Times New Roman"|"Verdana"|"Comic sans

MS">Midnapore City College

Font Color: Font color is used to set the text color using a font tag with the color

attribute in an HTML document. Color can be specified either with its name or with

its hex code.

Syntax:

Example: Midnapore City

College

Text Decoration:

CSS properties like text-decoration can be used to add decorations to text, such as

underline, overline, or line-through.

Example: <p style="text-decoration: underline;">Underlined text</p>

Line Spacing:

You can control the spacing between lines of text using the line-height property.

Example: <p style="line-height: 1.5;">This is text with increased line spacing.

</p>

Text Shadow:

The text-shadow property allows you to add a shadow effect to text.

Example: <h1 style="text-shadow: 2px 2px red;">Text with shadow</h1>

Text Transformation:

CSS properties like text-transform can be used to change the capitalization of text,

making it uppercase, lowercase, or capitalize the first letter of each word.

Example: <p style="text-transform: uppercase;">Uppercase text</p>

Text Effects

Exposure to Various Tags (DIV, MARQUEE, NOBR, DFN, HR, LISTING,

130

Comment, IMG)

DIV Tag:

✓ The div tag is known as Division tag.

✓ The div tag is used in HTML to make divisions of content in the web page

like (text, images, header, footer, navigation bar, etc).

✓ Div tag has both open (<div>) and closing (</div>) tag and it is mandatory to

close the tag.

✓ Div tag is Block level tag.

✓ It is a generic container tag.

✓ It is used to group various tags of HTML so that sections can be created and

styles can be applied to them.

✓ Every div tag will start from a new line, and not the same line.

Syntax: <div><--- contents ---></div>

Example:

<div>I am in div 1</div>

<div>It's 2nd div</div>

MARQUEE Tag:

✓ The Marquee HTML tag is a non-standard HTML element which is used to

scroll an image or text horizontally or vertically.

✓ In simple words, you can say that it scrolls the image or text up, down, left or

right automatically.

✓ Marquee tag was first introduced in early versions of Microsoft's Internet

Explorer.

Syntax: <marquee>--- contents ---</marquee>

Example: <marquee>This is an example of html marquee </marquee>

Marquee's element contains several attributes that are used to control and adjust the

appearance of the marquee.

Attribute Description

behavior It facilitates user to set the behavior of the marquee to one of the three

different types: scroll, slide and alternate.

direction defines direction for scrolling content. It may be left, right, up and

down.

width defines width of marquee in pixels or %.

height defines height of marquee in pixels or %.

hspace defines horizontal space in pixels around the marquee.

vspace defines vertical space in pixels around the marquee.

scrolldelay defines scroll delay in seconds.

scrollamount defines scroll amount in number.

loop defines loop for marquee content in number.

131

bgcolor defines background color. It is now deprecated.

HTML Scroll Marquee:

It is a by default property. It is used to scroll the text from right to left, and

restarts at the right side of the marquee when it is reached to the end of left side.

After the completion of loop text disappears.

Example:

<marquee width="100%" behavior="scroll" bgcolor="yellow">

This is an example of a scroll marquee...

</marquee>

HTML Slide Marquee:

In slide marquee, all the contents to be scrolled will slide the entire length of

marquee but stops at the end to display the content permanently.

Example:

<marquee width="100%" behavior="slide" bgcolor="yellow">

This is an example of a slide marquee...

</marquee>

HTML Alternate Marquee:

It scrolls the text from right to left and goes back left to right.

<marquee width="100%" behavior="alternate" bgcolor="pink">

This is an example of a alternate marquee...

</marquee>

Nested marquee example:

<marquee width="400px" height="100px" behavior="alternate" style="border:2px s

olid red">

<marquee behavior="alternate">

Nested marquee...

</marquee>

</marquee>

 NOBR Tag

✓ The HTML NOBR <nobr> tag is applied on text to not break a single line into

multiple lines for users to scroll down to see the whole content. This element

must be used in HTML.

✓ When text goes outside the screen, the browser will immediately break the text

to the next line. If we use the <nobr> tag then it will not permit the browser to

break the line.

132

✓ The <nobr> tag is a non-standard element. It works in some browsers but its use

is discouraged and can be removed at any time.

✓ Use the CSS white-space property instead.

Note: <nobr> tag is not supported in html5.

Syntax: <nobr> Statement </nobr>

Attribute: This tag doesn’t contain any attribute.

Example: <h2>Nobr Tag Example</h2>

<nobr>Codingtag is the E-learning website covering all aspects of technical and

nontechnical tutorials including advanced programming, web Development languages,

current affairs and technical interviews question and Answers on C, C++, Python, PHP,

CSS, AngularJS, MongoDB and on all latest trending technologies. </nobr>

DFN Tag

HTML <dfn> tag also called as HTML definition tag. It is used to represent the term

which is defined within context of definition phrase or sentence in an HTML document.

The defining instance term usually the first term in a document.

If a term is contained within the <dfn> element then browser understands that nearby

text is the definition of the term.

Syntax: <dfn>Content......... </dfn>

Example 1: <p><dfn>Midnapore City College</dfn> is a portal

for mcc.</p>

Example 2: Using title attribute of the <dfn> tag.

<p>

<dfn title=" Midnapore City College ">MCC</dfn>is a portal for mcc.

</p>

Example 3: Using title attribute of the <abbr> tag inside the <dfn> element.

<p>

<dfn>

<abbr title=" Midnapore City College ">MCC</abbr>

</dfn> is a portal for mcc.

</p>

133

 HR Tag

The <hr> tag in HTML stands for horizontal rule and is used to insert a horizontal

rule or a thematic break in an HTML page to divide or separate document sections.

The <hr> tag is an empty tag, and it does not require an end tag.

Tag Attributes: The table given below describe the <hr> tag attributes. These

attributes are not supported in HTML5:

Attribute Value Description

align Left, center

right

Used to specify the alignment of the horizontal rule.

noshade noshade Used to specify the bar without shading effect.

size pixels Used to specify the height of the horizontal rule.

width pixels Used to specify the width of the horizontal rule.

Syntax: <hr> ...

Example:

<p>Normal horizontal line.</p>

 <!--HTML hr tag is used here-->

 <hr>

<p>Horizontal line with height of 30 pixels</p>

 <hr size="30" >

<p>Horizontal line with height of 30 pixels and noshade.</p>

 <hr size="30" noshade>

LISTING Tag

Lists and their Types

HTML Lists are used to specify lists of information. All lists may contain one or more

list elements. There are three different types of HTML lists:

1. Ordered List or Numbered List (ol)

2. Unordered List or Bulleted List (ul)

3. Description List or Definition List (dl)

HTML Ordered List or Numbered List:

In the ordered HTML lists, all the list items are marked with numbers by

default. It is known as numbered list also. The ordered list starts with tag

and the list items start with tag.

Syntax:

 Item1

 Item2

134

 Item3

Attributes:

• compact: It defines the list should be compacted (compact attribute is not

supported in HTML5. Use CSS instead.).

• reversed: It defines that the order will be descending.

• start: It defines from which number the order will start.

• type: It defines which type(1, A, a, I, and i) of the order you want in your

list of numeric, alphabetic, or roman numbers.

Example: This example illustrates the use of the reverse attribute, control list

counting & type attribute.

<p>reversed attribute</p>

 <ol reversed>

 HTML

 CSS

 JS

<p>start attribute</p>

 <ol start="5">

 HTML

 CSS

 JS

<p>type attribute</p>

 <ol type="i">

 HTML

 CSS

 JS

Nested ordered list, a nested ordered list is a list that has a list inside another list.

 Coffee

 Tea

 Black tea

 Green tea

135

 Milk

The HTML Unordered List:

An unordered list starts with the “ul” tag. Each list item starts with the “li” tag. The

list items are marked with bullets i.e small black circles by default.

Syntax: list of items

Attribute: This tag contains two attributes which are listed below:

• compact: It will render the list smaller.

• type: It specifies which kind of marker is used in the list.

Note: The attributes are not supported by HTML5.

Example: This example describes the unordered list.

<h2>Grocery list</h2>

 Bread

 Eggs

 Milk

 Coffee

HTML unordered list has various list item markers:

Example 1: The Disc can be used to set the list item marker to a bullet i.e default.

<h2>Unordered List with Disc Bullets</h2>

 <ul style="list-style-type: disc">

 MCC

 Sudo

 Gfg

 Gate

 Placement

Example 2: The Circle can be used to set the list item marker to a circle.

<h2>Unordered List with Circle Bullets</h2>

<ul style="list-style-type: circle">

 MCC

 Sudo

 Gfg

 Gate

 Placement

https://www.geeksforgeeks.org/html-ul-compact-attribute/#:~:text=The%20HTML%20%7C%20compact,It%20is%20a%20Boolean%20attribute.
https://www.geeksforgeeks.org/html-ul-type-attribute/

136

Example 3: The Square can be used to set the list item marker to a square.

 <h2>Unordered List with Square Bullets</h2>

<ul style="list-style-type: square">

 MCC

 Sudo

 Gfg

 Gate

 Placement

Example 4: It’s none that can be used to set the list item marker with no mark.

<h2>Unordered List with No Bullets</h2>

 <ul style="list-style-type: none">

 MCC

 Sudo

 Gfg

 Gate

 Placement

Example: Nested Unordered List, It is used to nest the list items ie., a list inside

another list.

<h2>Nested Unordered List</h2>

 DSA

 Array

 Linked List

 stack

 Queue

 Web Technologies

 HTML

 CSS

 JavaScript

 Aptitude

 Gate

 Placement

HTML Description List:

137

A description list is a list of terms, with a description of each term. The <dl> tag

defines the description list, the <dt> tag defines the term name, and the <dd> tag

describes each term.

Syntax:

<dl> Contents... </dl>

Example: This example describes the HTML Description List.

<h2>A Description List</h2>

 <dl>

 <dt>Coffee</dt>

 <dd>- 500 gms</dd>

 <dt>Milk</dt>

 <dd>- 1 ltr Tetra Pack</dd>

 </dl>

Comment Tag

The comment tag is used to insert comments in the source code. Comments are not

displayed in the browsers.

You can use comments to explain your code, which can help you when you edit the

source code at a later date. This is especially useful if you have a lot of code.

Syntax: <!-- Comments here -->

Types of HTML Comments: There are three types of comments in HTML which

are:

• Single-line comment

• Multi-lines comment

• Using <comment> tag

Single-line comment: Single line comment is given inside the

(<!-- comment -->) tag.

Multi-line comment: Multiple lines can be given by the syntax (<!– –>), Basically

it’s the same as we used in single line comment, difference is half part of the comment

(” --> “), is appended where the intended comment line ends.

Using <comment> tag: There used to be an HTML <comment> tag, but currently it

is not supported by any modern browser.

 IMG Tag

Attributes of Image Tag

HTML tag is used to add image inside webpage/website. Nowadays website

does not directly add images to a web page, as the images are linked to web pages by

using the tag which holds space for the image.

Syntax:

138

Attributes: The tag has following attributes.

✓ src: It is used to specify the path to the image.

✓ alt: It is used to specify an alternate text for the image. It is useful as it informs

the user about what the image means and also due to any network issue if the

image cannot be displayed then this alternate text will be displayed.

✓ crossorigin: It is used to import images from third-party sites that allow cross-

origin access to be used with canvas.

✓ height: It is used to specify the height of the image.

✓ width: It is used to specify the width of the image.

✓ ismap: It is used to specify an image as a server-side image map.

✓ usemap: It is used to specify an image as a client-side image map.

✓ sizes: It is used to specify image sizes for different page layouts.

✓ srcset: It is used to specify a list of image files to use in different situations.

✓ loading: It is used to specify whether a browser should defer loading of images

until some conditions are met or load an image immediately.

✓ longdesc: It is used to specify a URL to a detailed description of an image.

✓ referrerpolicy: It is used to specify which referrer information to use when

fetching an image i.e. no-referrer, no-referrer-when-downgrade, origin,

origin-when-cross-origin, unsafe-url.

Example:

Image Maps:

In image mapping/maps an image is specified with certain set of coordinates inside

the image which act as hyperlink areas to different destinations.

The HTML <map> tag defines an image map. An image map is an image with

clickable areas. The areas are defined with one or more <area> tags.

Elements required in Mapping an Image:

There are three basic html elements which are required for creating a mapped

image.

1. Map: It is used to create a map of the image with clickable areas.

2. Image: It is used for the image source on which mapping is done.

3. Area: It is used within the map for defining clickable areas.

Example:

<img src="work.jpg" alt="Workplace" usemap="#workmap" width="400"

height="379">

<map name="workmap">

<area shape="rect" coords="34,44,270,350" alt="Computer" href="computer.htm">

<area shape="rect" coords="290,172,333,250" alt="Phone" href="phone.htm">

 <area shape="circle" coords="337,300,44" alt="Cup of coffee" href="coffee.htm">

</map>

Background Image on a HTML element:

139

To add a background image on an HTML element, use the HTML style attribute and

the CSS background-image property:

Example:

Add a background image on a web page:

<body style="background-image:url(mcc.jpg);">

<h2>Background Image</h2>

</body>

 Or

If you want the entire page to have a background image in CSS background

properties you must specify the background image on the <body> element:

Example:

Add a background image for the entire page:

<html>

<head>

<style>

body {

 background-image: url(mcc.jpg);

}

</style>

</head>

<body>

</body>

</html>

Note: To avoid the background image from repeating itself, set the background-

repeat property to no-repeat.

Example

<style>

 body {

 background-image: url(mcc.jpg);

 background-repeat: no-repeat;

}

</style>

Color and Background of Web Pages

In HTML, we can change the color of the background of a webpage using the following

different ways:

1. Using bgcolor attribute

140

2. Using an Inline style attribute

3. Using internal CSS

1. Using bgcolor attribute

HTML provides various styles and attributes to make changes to the documents as

per the user’s needs. Following is an HTML code that shows the use

of bgcolor attribute:

Syntax: <Body bgcolor=" ">

Example:

<body bgcolor="green" >

 <h1>Hello reader my name is sanjoy Welcome to MCC</h1>

</body>

2. Using an Inline style attribute

If we want to change the color of a background of a web page using an inline style

attribute, which are given below.

Syntax: <body style="background-color: ">

Example:

<body style="background-color:green">

 <h1>Hello reader my name is sanjoy Welcome to MCC</h1>

</body>

3. Using internal CSS

If we want to change the color of a background of a web page using an internal

cascading stylesheet, which are given below.

Syntax:

<Head>

<style>

Body

{

background-color: color_name;

}

</style>

141

</Head>

Example:

<Head>

<style>

Body

{

background-color: red;

}

</style>

</Head>

<Body>

This page helps you to understand how to change the backround color of a web

 page.

</Body>

Hypertext, Hyperlink and Hypermedia

Hypertext: Hypertext is a cross referencing tool which connects the links to other text

using hyperlinks. Hypertext is non-linear and multi sequential and it is different from

our normal text. By the help of hypertext one organized way is achieved to present

information. This makes the user to move from one part of the information to another

part of the information which is in same page or any other page. It makes the

documentation simple by providing a way of easily accessible to the end user.

Hypermedia: Hypermedia is the extension of Hypertext which includes multiple

forms of media such as text, graphics, audio or video etc rather than only text based

like hypertext. It provides a facility to connect the web pages to create a network with

multimedia elements with a simple click for a better multimedia experience.

Hypermedia allows links to be integrate in multimedia elements like images and

videos and when we click on that it takes us to that page.

Hyperlink: The hyperlink contains the URL of the webpages. In a general way, a

hyperlink is referenced when a hypertext navigated. These hyperlinks are hidden

under the text, image, graphics, audio, video, and gets highlighted once we hover the

mouse over it. To activate the hyperlink, we click the hypermedia, which ends up

within the opening of the new document. It establishes the connection between the

knowledge units, usually known as the target document and therefore the alternate

name for the hyperlink is anchor or node.

Comparison Between the Hypertext and Hypermedia:

142

Features Hypertext Hypermedia

Definition Hypertext is the text that

connects to other text blocks

in the same or a distinct

document.

Hypertext is an extension of

hypermedia, which is not just

text-based.

Involvement It involves only text. It involves images, video,

graphics, audio, etc.

User

Experience

The usage of hypertext

encourages the user to move

across the document and also

from one page to another.

Hypermedia is more attractive

to users than hypertext since it

allows for greater mobility.

Application Users may easily switch

between documents by

clicking on the hypertext or

goto links.

It expands the capabilities of

hypertext and allows users to

move to another page by

clicking text or other

multimedia.

Relation It is a part of hypermedia. It comes in the superior-level

entity.

Method It is a non-linear way. It is a linear way.

Link Only the text becomes a

component of the link in this

case.

It is an improved version of

hypertext in which, in addition

to text, other multimedia

becomes a part of the link.

Comparison Between the Hypertext and Hyperlink:

Hypertext Hyperlink

Hypertext contains the Non-linear

linking of the text with some other

information.

In Hyperlinks the references are used in

the hypertext or with other hypermedia.

Hypertext involves only text. Hyperlink involves Text, media, audio,

video, images, and graphics.

Hypertext directed information only

generates the related information.

Hyperlink directed link could contain

some unrelated information.

Hypertext contains Hyperlink. Hyperlink contains the comprised of the

URLs.

Hypertext associate with the keywords. Hyperlink associate with the anchor

tags.

143

Links, Anchors and URLs, Links to External Documents

HTML Links - Hyperlinks

✓ HTML links are hyperlinks.

✓ You can click on a link and jump to another document.

✓ When you move the mouse over a link, the mouse arrow will turn into a little

hand.

Note: A link does not have to be text. A link can be an image or any other HTML

element!

The HTML anchors tag <a> tag defines a hyperlink. It has the following syntax:

Syntax: link text

The most important attribute of the <a> element is the href attribute, which

indicates the link's destination.

The link text is the part that will be visible to the reader.

Clicking on the link text, will send the reader to the specified URL address.

Example:

Visit Midnapore City College

HTML Links - The target Attribute

By default, the linked page will be displayed in the current browser window. To

change this, you must specify another target for the link.

The target attribute specifies where to open the linked document.

The target attribute can have one of the following values:

• _self - Default. Opens the document in the same window/tab as it was clicked

• _blank - Opens the document in a new window or tab

• _parent - Opens the document in the parent frame

• _top - Opens the document in the full body of the window

Links to External Documents and internal document:

In HTML, you can create links to both external documents (such as other web pages

144

or files hosted on external servers) and internal documents (pages or resources within

the same website). Here's how to create both types of links:

Links to External Documents:

To create links to external documents, you can use the "a" (anchor) element with the

"href" attribute specifying the URL of the external resource. Here's an example:

Visit Example Website

In this example, the link text "Visit Example Website" will take the user to the external

website "https://www.example.com" when clicked.

Links to Internal Documents:

To create links to internal documents within your website, you can use the "a" element

with the "href" attribute, specifying a relative path to the internal document. Relative

paths are used to reference files within the same website directory. Here's an example:

Learn About Us

In this case, when the user clicks the "Learn About Us" link, they will be directed to

the internal webpage "about.html."

Remember to replace the example URLs and file names with the actual external URLs

and internal document paths you want to link to. Additionally, you can use absolute

URLs for external links and relative paths for internal links based on your website's

structure.

Absolute URLs vs. Relative URLs:

✓ Using an absolute URL (a full web address) in the href attribute.

✓ A local link (a link to a page within the same website) is specified with

a relative URL (without the "https://www" part)

Example:

<h2>Absolute URLs</h2>

<p>Google</p>

<h2>Relative URLs</h2>

<p>HTML Images</p>

HTML Links - Use an Image as a Link

To use an image as a link, just put the tag inside the <a> tag:

Example:

145

HTML Links - Create Bookmarks

Create a Bookmark in HTML:

✓ Bookmarks can be useful if a web page is very long.

✓ To create a bookmark - first create the bookmark, then add a link to it.

✓ When the link is clicked, the page will scroll down or up to the location with

the bookmark.

Example:

First, use the id attribute to create a bookmark:

<h2 id="C4">Chapter 4</h2>

Then, add a link to the bookmark ("Jump to Chapter 4"), from within the same page:

Example:

Jump to Chapter 4

 Footnote and eMailing

Creating Footnotes:

To create footnotes in HTML, you typically use anchor tags and the "sup" (superscript)

element for the reference number.

Example:

<p>This is some text with a footnote

^[1].

</p>

<div id="footnote1">

 <p>^[1] This is the content of the footnote.</p>

</div>

In this example, a superscript "[1]" is added to the word "footnote1," and a

corresponding "div" element with the ID "footnote1" contains the content of the

footnote. When a user clicks on the footnote reference, they are taken to the footnote

content within the same page.

146

Adding Email Links:

To create an email link in HTML, you can use the "a" (anchor) element with the "href"

attribute set to "mailto:" followed by the email address.

Example:

<p>Contact us via email:

example@email.com

</p>

In this example, when a user clicks the email address, it will open their default email

client with a new email addressed to "example@email.com."

 Creating Table

Tables in HTML: An HTML table is defined with the <table> tag. Each table row is

defined with the <tr> tag. A table header is defined with the <th> tag. By default,

table headings are bold and centered. A table data/cell is defined with the <td> tag.

Example:

 <table border="1">

 <tr>

 <th>Firstname</th>

 <th>Lastname</th>

 <th>Age</th>

 </tr>

 <tr>

 <td>Swastik</td>

 <td>Chakrabarty</td>

 <td>20</td>

 </tr>

 <tr>

 <td>Arun</td>

 <td>Singh</td>

 <td>32</td>

 </tr>

 </table>

HTML Table Borders:

<table> border Attribute:

The HTML <table> border Attribute is used to specify the border of a table. It sets

the border around the table cells.

Syntax: <table border="1|0">

147

Attribute Values:

• 1: It sets the border around the table cells.

• 0: It removes (not set) the border around the table cells.

Cellpadding and Cellspacing Attributes:

There are two attributes called cellpadding and cellspacing which you will use to

adjust the white space in your table cells. The cellspacing attribute defines space

between table cells, while cellpadding represents the distance between cell borders

and the content within a cell.

Example:

<table border="5" cellpadding = "20" cellspacing = "15">

 <tr>

 <th>Firstname</th>

 <th>Lastname</th>

 <th>Age</th>

 </tr>

 <tr>

 <td>Swastik</td>

 <td>Chakrobarty</td>

 <td>20</td>

 </tr>

 <tr>

 <td>Arun</td>

 <td>Singh</td>

 <td>32</td>

 </tr>

 </table>

Colspan and Rowspan Attributes:

You will use colspan attribute if you want to merge two or more columns into a single

column. Similar way you will use rowspan if you want to merge two or more rows.

Example:

<table border = "1">

 <tr>

 <th>Column 1</th>

 <th>Column 2</th>

148

 <th>Column 3</th>

 </tr>

 <tr>

 <td rowspan = "2">Row 1 Cell 1</td>

 <td>Row 1 Cell 2</td>

 <td>Row 1 Cell 3</td>

 </tr>

 <tr>

 <td>Row 2 Cell 2</td>

 <td>Row 2 Cell 3</td>

 </tr>

 <tr>

 <td colspan = "3">Row 3 Cell 1</td>

 </tr>

 </table>

Collapsed Table Borders:

To avoid having double borders like in the example above, set the CSS border-

collapse property to collapse.

Example:

<head>

<style>

table, th, td {

 border: 1px solid black;

 border-collapse: collapse;

}

</style>

</head>

<table style="width:100%">

 <tr>

 <th>Firstname</th>

 <th>Lastname</th>

 <th>Age</th>

 </tr>

 <tr>

 <td>Jill</td>

 <td>Smith</td>

149

 <td>50</td>

 </tr>

 <tr>

 <td>Eve</td>

 <td>Jackson</td>

 <td>94</td>

 </tr>

 <tr>

 <td>John</td>

 <td>Doe</td>

 <td>80</td>

 </tr>

</table>

 Frame

HTML frames are used to divide your browser window into multiple sections where

each section can load a separate HTML document. A collection of frames in the

browser window is known as a frameset. The window is divided into frames in a

similar way the tables are organized: into rows and columns.

Creating Frames: Instead of using body tag, use frameset tag in HTML to use frames

in web browser. But this Tag is deprecated in HTML 5. The <frameset> tag is used

to define how to divide the browser. Each frame is indicated by frame tag and it

basically defines which HTML document shall open into the frame. To define the

horizontal frames, use row attribute of frame tag in HTML document and to define

the vertical frames use col attribute of frame tag in HTML document.

Attributes of Frameset tag:

cols: The cols attribute is used to create vertical frames in web browser. This

attribute is basically used to define the no. of columns and its size inside the

frameset tag.

The size or width of the column is set in the frameset in the following ways:

Use absolute value in pixel:

 Example:

<frameset cols = "300, 400, 300">

Use percentage value:

 Example:

<frameset cols = "30%, 40%, 30%">

Use wild card values:

 Example:

<frameset cols = "30%, *, 30%0022>

rows: The rows attribute is used to create horizontal frames in web browser. This

attribute is used to define no of rows and its size inside the frameset tag.

150

The size of rows or height of each row use the following ways:

Use absolute value in pixel:

 Example:

<frameset rows = "300, 400, 300">

Use percentage value:

 Example:

<frameset rows = "30%, 40%, 30%">

Use wild card values:

 Example:

<frameset rows = "30%, *, 30%">

Comple code Example:

<frameset rows="50%,50%">

<frame src="frame1.html">

 <frameset cols="50%,50%">

 <frame src="frame2.html" >

 <frame src="frame3.html" >

 </frameset>

 </frameset>

Advantages of Frames:

✓ It allows the user to view

multiple documents within a single

Web page.

✓ It loads pages from different servers in a single frameset.

✓ The older browsers that do not support frames can be addressed using the tag.

Disadvantages of Frames:

There are few drawbacks with using frames, so it's never recommended to use frames

in your webpages −

✓ Some smaller devices cannot cope with frames often because their screen is not

big enough to be divided up.

✓ Sometimes your page will be displayed differently on different computers due

to different screen resolution.

✓ The browser's back button might not work as the user hopes.

✓ There are still few browsers that do not support frame technology.

StyleSheet.

HTML Attribute id and class:

Using The id Attribute:

151

✓ The id attribute specifies a unique id for an HTML element. The value of

the id attribute must be unique within the HTML document.

✓ The id attribute is used to point to a specific style declaration in a style sheet. It

is also used by JavaScript to access and manipulate the element with the specific

id.

✓ write a hash character (#), followed by an id name. Then, define the CSS

properties within curly braces {}.

Syntax:

 #h1{

CSS Properties

}

Example:

<html>

<head>

<style>

#h1 {

 background-color: lightblue;

 color: black;

 padding: 40px;

 text-align: center;

}

</style>

</head>

<body>

<h1 id="h1">My Header</h1>

</body>

</html>

Using The class Attribute:

✓ The class attribute is often used to point to a class name in a style sheet.

✓ It can also be used by a JavaScript to access and manipulate elements with the

specific class name.

✓ write a dot character (.), followed by a class name. Then, define the CSS

properties within curly braces {}.

Syntax:

152

 #h1{

CSS Properties

}

Example:

<html>

<head>

<style>

.h1 {

 background-color: lightblue;

 color: black;

 padding: 40px;

 text-align: center;

}

</style>

</head>

<body>

<h1 class="h1">My Header</h1>

</body>

</html>

CSS (Cascading Style Sheets):

✓ CSS stands for Cascading Style Sheets.

✓ CSS describes how HTML elements are to be displayed on screen, paper, or in

other media

✓ CSS saves a lot of work. It can control the layout of multiple web pages all at

once.

✓ External stylesheets are stored in CSS files.

CSS Syntax:

✓ The selector points to the HTML element you want to style.

✓ The declaration block contains one or more declarations separated by

semicolons.

✓ Each declaration includes a CSS property name and a value, separated by a

colon.

153

✓ Multiple CSS declarations are separated with semicolons, and declaration

blocks are surrounded by curly braces.

Example:

<html>

<head>

 <style>

p {

 color: red;

 text-align: center;

}

</style>

</head>

<body>

<p>Hello World!</p>

<p>These paragraphs are styled with CSS.</p>

</body>

</html>

Types of CSS (Cascading Style Sheet)

Cascading Style Sheet (CSS) is used to set the style in web pages that

contain HTML elements. It sets the background color, font-size, font-family,

color, … etc. properties of elements on a web page.

There are three types of CSS which are given below:

• Inline CSS

• Internal or Embedded CSS

• External CSS

Inline CSS:

✓ An inline style may be used to apply a unique style for a single element.

✓ To use inline styles, add the style attribute to the relevant element. The style

attribute can contain any CSS property.

Example

Inline styles are defined within the "style" attribute of the relevant element:

<!DOCTYPE html>

<html>

<body>

<h1 style="color:blue; text-align:center;">This is a heading</h1>

<p style="color:red;">This is a paragraph.</p>

</body>

154

</html>

External CSS:

✓ With an external style sheet, you can change the look of an entire website by

changing just one file!

✓ Each HTML page must include a reference to the external style sheet file

inside the <link> element, inside the head section.

Example

External styles are defined within the <link> element, inside the <head> section of an

HTML page:

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet" href="external.css">

</head>

<body>

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

</body>

</html>

✓ An external style sheet can be written in any text editor, and must be saved

with a .css extension.

✓ The external .css file should not contain any HTML tags.

✓ Here is how the "external.css" file looks:

external.css file name save

body {

 background-color: lightblue;

}

h1 {

 color: navy;

 margin-left: 20px;

}

Internal CSS

✓ An internal style sheet may be used if one single HTML page has a unique

style.

✓ The internal style is defined inside the <style> element, inside the head section.
Example

155

Internal styles are defined within the <style> element, inside the <head> section of an

HTML page:

<!DOCTYPE html>

<html>

<head>

<style>

body {

 background-color: linen;

}

h1 {

 color: maroon;

 margin-left: 40px;

}

</style>

</head>

<body>

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

</body>

</html>

CSS Margins:

✓ The CSS margin properties are used to create space around elements,

outside of any defined borders.

✓ With CSS, you have full control over the margins. There are properties for

setting the margin for each side of an element (top, right, bottom, and left).

Margin - Individual Sides:

CSS has properties for specifying the margin for each side of an element:

• margin-top

• margin-right

• margin-bottom

• margin-left
Example:

p {

 margin-top: 100px;

 margin-bottom: 100px;

 margin-right: 150px;

 margin-left: 80px;

}

CSS Padding:

156

The CSS padding properties are used to generate space around an element's

content, inside of any defined borders.

With CSS, you have full control over the padding. There are properties for setting the

padding for each side of an element (top, right, bottom, and left).

Padding - Individual Sides

CSS has properties for specifying the padding for each side of an element:

• padding-top

• padding-right

• padding-bottom

• padding-left

Example:

div {

 padding-top: 50px;

 padding-right: 30px;

 padding-bottom: 50px;

 padding-left: 80px;

}

 Form

 HTML Form:

Form is an HTML element to collect input data containing interactive controls. It

provides facilities to input text, number, values, email, password, and control fields

such as checkboxes, radio buttons, submit buttons, etc., or in other words, form is a

container that contains input elements like text, email, number, radio buttons,

checkboxes, submit buttons, etc. Forms are generally used when you want to collect

data from the user.

Syntax:

<form>

 <!--form elements-->

</form>

The HTML <form> Elements

The HTML <form> element can contain one or more of the following form

elements:

• <input>

• <label>

• <select>

• <textarea>

• <button>

157

• <fieldset>

• <legend>

• <datalist>

• <output>

• <option>

• <optgroup>

The <input> Element:

✓ One of the most used form elements is the <input> element.

The <input> element can be displayed in several ways, depending on

the type attribute.

Example:

<label for="fname">First name:</label>

<input type="text" id="fname" name="fname">

The <label> Element

The <label> element defines a label for several form elements.

✓ The <label> element is useful for screen-reader users, because the screen-

reader will read out loud the label when the user focus on the input element.

✓ The <label> element also help users who have difficulty clicking on very

small regions (such as radio buttons or checkboxes) - because when the user

clicks the text within the <label> element, it toggles the radio

button/checkbox. The for attribute of the <label> tag should be equal to

the id attribute of the <input> element to bind them together.

The <select> Element

The <select> element defines a drop-down list:

Example:

<label for="cars">Choose a car:</label>

<select id="cars" name="cars">

 <option value="volvo">Volvo</option>

 <option value="saab">Saab</option>

 <option value="fiat">Fiat</option>

 <option value="audi">Audi</option>

</select>

158

Introduction to JavaScript:

JavaScript is a lightweight, cross-platform, single-threaded, and interpreted

compiled programming language. It is also known as the scripting language for

webpages. It is well-known for the development of web pages, and many non-

browser environments also use it.

JavaScript is a weakly typed language (dynamically typed). JavaScript can be used

for Client-side developments as well as Server-side developments. JavaScript is both

an imperative and declarative type of language. JavaScript contains a standard library

of objects, like Array, Date, and Math, and a core set of language elements

like operators, control structures, and statements.

➢ Client-side: It supplies objects to control a browser and its Document Object

Model (DOM). Like if client-side extensions allow an application to place

elements on an HTML form and respond to user events such as mouse

clicks, form input, and page navigation. Useful libraries for the client side

are AngularJS, ReactJS, VueJS and so many others.

➢ Server-side: It supplies objects relevant to running JavaScript on a server. For

if the server-side extensions allow an application to communicate with a

database, and provide continuity of information from one invocation to another

of the application, or perform file manipulations on a server. The useful

framework which is the most famous these days is node.js.

Link JavaScript file to HTML:

JavaScript can be added to HTML file in two ways:

• Internal JS: We can add JavaScript directly to our HTML file by writing the

code inside the <script> tag. The <script> tag can either be placed inside the

<head> or the <body> tag according to the requirement.

• External JS: We can write JavaScript code in another files having an

extension.js and then link this file inside the <head> tag of the HTML file in

which we want to add this code.

Syntax:

<script>

 //Code

</script>

Example:

https://www.geeksforgeeks.org/server-side-client-side-programming/
https://www.geeksforgeeks.org/introduction-to-angularjs/
https://www.geeksforgeeks.org/react-js-introduction-working/
https://www.geeksforgeeks.org/where-to-put-javascript-in-an-html-document/
https://www.geeksforgeeks.org/what-is-external-javascript/

159

<!DOCTYPE html>

<html >

<head>

 <title>

 JavaScript

 </title>

</head>

<body>

 <script>

 console.log("Welcome to Midnapore City College");

 </script>

</body>

</html>

Features of JavaScript:

Here are a few things that we can do with JavaScript:

✓ JavaScript was created in the first place for DOM manipulation. Earlier

websites were mostly static, after JS was created dynamic Web sites were

made.

✓ Functions in JS are objects. They may have properties and methods just like

other objects. They can be passed as arguments in other functions.

✓ Can handle date and time.

✓ Performs Form Validation although the forms are created using HTML.

✓ No compiler is needed.

Application of JavaScript:

Web Development: Adding interactivity and behavior to static sites JavaScript was

invented to do this in 1995. By using AngularJS that can be achieved so easily.

Web Applications: With technology, browsers have improved to the extent that a

language was required to create robust web applications. When we explore a map in

Google Maps then we only need to click and drag the mouse.

Games: The combination of JavaScript and HTML 5 makes JavaScript popular in

game development as well.

Art: Artists and designers can create whatever they want using JavaScript to draw on

HTML 5 canvas, and make the sound more effective also can be use JavaScript

library.

Machine Learning: This JavaScript library can be used in web development by using

machine learning.

Mobile Applications: JavaScript can also be used to build an application for non-web

contexts. The features and uses of JavaScript make it a powerful tool for creating

mobile applications. This is a Framework for building web and mobile apps using

160

JavaScript.

Limitation of JavaScript:

Security risks: JavaScript can be used to fetch data using AJAX or by manipulating

tags that load data such as , <object>, <script>. These attacks are called cross-

site script attacks.

Performance: JavaScript does not provide the same level of performance as offered

by many traditional languages as a complex program written in JavaScript would be

comparatively slow.

Complexity: To master a scripting language, programmers must have a thorough

knowledge of all the programming concepts, core language objects, and client and

server-side objects otherwise it would be difficult for them to write advanced scripts

using JavaScript.

Weak error handling and type checking facilities: It is a weakly typed language as

there is no need to specify the data type of the variable. So wrong type checking is

not performed by compile.

Why JavaScript is known as a lightweight programming language?

JavaScript is considered lightweight due to the fact that it has low CPU usage, is easy

to implement, and has a minimalist syntax. Minimalist syntax as in, has no data types.

Everything is treated here as an object. It is very easy to learn because of its syntax

similar to C++ and Java.

A lightweight language does not consume much of your CPU’s resources. It doesn’t

put excess strain on your CPU or RAM. JavaScript runs in the browser even though

it has complex paradigms and logic which means it uses fewer resources than other

languages.

For example, NodeJS, a variation of JavaScript not only performs faster

computations but also uses fewer resources than its counterparts such as Dart or Java.

Moreover, when compared with other programming languages, it has fewer in-built

libraries or frameworks, contributing as another reason for the JavaScript being

lightweight.

JavaScript Compiled or Interpreted or both?

JavaScript is both compiled and interpreted. In the earlier versions of JavaScript, it

used only the interpreter that executed code line by line and shows the result

immediately. But with time the performance became an issue as interpretation is quite

slow.

161

Therefore, in the newer versions of JS, probably after the V8, the JIT compiler

was also incorporated to optimize the execution and display the result more quickly.

This JIT compiler generates a bytecode that is relatively easier to code. This bytecode

is a set of highly optimized instructions.

 The V8 engine initially uses an interpreter, to interpret the code. On further

executions, the V8 engine finds patterns such as frequently executed functions, and

frequently used variables, and compiles them to improve performance.

Difference between Java and JavaScript:

Java JavaScript

Java is a strongly typed language and

variables must be declared first to use in

the program. In Java, the type of a

variable is checked at compile-time.

JavaScript is a loosely typed language and

has a more relaxed syntax and rules.

Java is an object-oriented programming

language primarily used for developing

complex enterprise applications.

JavaScript is a scripting language used for

creating interactive and dynamic web

pages.

Java applications can run in any virtual

machine (JVM) or browser.

JavaScript code used to run only in the

browser, but now it can run on the server

via Node.js.

Objects of Java are class-based even we

can’t make any program in java without

creating a class.

JavaScript Objects are prototype-based.

Java program has the file extension

“.java” and translates source code into

bytecodes which are executed by JVM

(Java Virtual Machine).

JavaScript file has the file extension “.js”

and it is interpreted but not compiled,

every browser has the JavaScript

interpreter to execute JS code. If compile

time

Java is a Standalone language. contained within a web page and

integrates with its HTML content.

Java has a thread-based approach to

concurrency.

JavaScript has an event-based approach to

concurrency.

Java supports multithreading, which

allows multiple threads of execution to

run concurrently within a single

program.

JavaScript does not support

multithreading, although it can simulate it

through the use of web workers.

Java is mainly used for backend JavaScript is used for the frontend and

backend both.

Java is statically typed, which means

that data types are determined at compile

time.

JavaScript is dynamically typed, which

means that data types are determined at

runtime.

Java uses more memory JavaScript uses less memory.

https://www.geeksforgeeks.org/introduction-to-scripting-languages/

162

Java requires a Java Development Kit

(JDK) to run the code

JavaScript requires any text editor

or browser console to run the code

JavaScript Variables

Variables are Containers for Storing Data

JavaScript Variables can be declared in 4 ways:

• Automatically

• Using var

• Using let

• Using const

Automatically variables:

Here x, y, and z are undeclared variables.

They are automatically declared when first used:

Example:

<script>

x = 5;

y = 6;

z = x + y;

console.log(z)

</script>

• Using var

Example:

<script>

var x = 5;

var y = 6;

var z = x + y;

console.log(z)

</script>

• Using let

Example:

<script>

let x = 5;

let y = 6;

let z = x + y;

console.log(z)

</script>

• Using const

Example:

<script>

163

const x = 5;

const y = 6;

const z = x + y;

console.log(z)

</script>

When to Use var, let, or const?

✓ Always declare variables.

✓ Always use const if the value should not be changed.

✓ Always use const if the type should not be changed (Arrays and Objects).

✓ Only use let if you can't use const.

✓ Only use var if you MUST support old browsers.

JavaScript Identifiers:

All JavaScript variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names (age, sum,

totalVolume).

The general rules for constructing names for variables (unique identifiers) are:

• Names can contain letters, digits, underscores, and dollar signs.

• Names must begin with a letter.

• Names can also begin with $ and _ (but we will not use it in this tutorial).

• Names are case sensitive (y and Y are different variables).

• Reserved words (like JavaScript keywords) cannot be used as names.

JavaScript Let:

The let keyword was introduced in ES6 (2015)

• Variables defined with let cannot be Redeclared.

• Variables defined with let must be Declared before use.

• Variables defined with let have Block Scope.

Cannot be Redeclared:

Variables defined with let cannot be redeclared.

You cannot accidentally redeclare a variable declared with let.

With let you cannot do this:

Example:

let x = "John Doe";

let x = 0;

With var you can:

Example:

var x = "John Doe";

var x = 0;

Block Scope:

JavaScript keywords: let and const. These two keywords provide Block Scope in

164

JavaScript. Variables declared inside a { } block cannot be accessed from outside the

block:
Example

{

 let x = 2;

}

// x can NOT be used here

Redeclaring Variables:

Redeclaring a variable using the var keyword can impose problems. Redeclaring a

variable inside a block will also redeclare the variable outside the block:

Example

var x = 10;

// Here x is 10

{

var x = 2;

// Here x is 2

}

// Here x is 2

Redeclaring a variable using the let keyword can solve this problem. Redeclaring a

variable inside a block will not redeclare the variable outside the block:

Example

let x = 10;

// Here x is 10

{

let x = 2;

// Here x is 2

}

// Here x is 10

Operators:

 JavaScript operators operate the operands, these are symbols that are

used to manipulate a certain value or operand. Operators are used to performing

specific mathematical and logical computations on operands.

JavaScript Operators: There are various operators supported by JavaScript.

• JS Arithmetic Operators

• JS Assignment Operators

• JS Comparison Operators

• JS Logical Operators

• JS Ternary Operators

• JS Bitwise Operators

• JS typeof Operator

• JS Arithmetic Operators

165

These are the operators that operate upon the numerical values and return a numerical

value.

Operator Description

+ Addition

- Subtraction

* Multiplication

** Exponentiation

/ Division

% Modulus (Remainder)

++ Increment

-- Decrement

Addition (+): Addition ‘+’ operator performs addition on two operands. This ‘+’

operator can also be used to concatenate (add) strings.

Y = 5 + 5 gives Y = 10

Y = "Sanjoy" + "Kumar" + "Barman" gives Y = "SanjoyKumarBarman"

Y = "Sanjoy" + 4 + "Barman" gives Y = "Sanjoy4Barman"

Example:

 let a = 10 + 20;

console.log(a);

Subtraction (-): Subtraction ‘-’ operator performs subtraction on two operands.

 Y = 5 - 3 gives Y = 2

Example:

 let a = 10 – 20;

console.log(a);

Multiplication (*): Multiplication ‘*’ operator performs multiplication on two

operands.

 Y = 5 * 5 gives Y = 25

Example:

 let a = 10 * 20;

console.log(a);

Division (/): Division ‘/’ operator performs division on two operands (divide the

numerator by the denominator).

 Y = 5 / 5 gives Y = 1

Example:

 let a = 100/20;

console.log(a);

Modulus (%): Modulus ‘%’ operator gives a remainder of an integer division.

A % B means remainder (A/B)

166

 Y = 5 % 4 gives Y = 1

Example:

 let a = 10%3;

console.log(a);

Exponentiation (**): Exponentiation ‘**’ operator gives the power of the first

operator raised to the second operator.

 Y = 5 ** 3 gives Y = 125

Example:

 let a = 10 ** 20;

console.log(a);

Increment (++): Increment ‘+ +’ operator increases an integer value by one.

let A = 10 and Y = A + + then A = 11, Y=10

if A = 10 and Y = + + A then A = 11, Y=11

Example:

 let a = 10;

 let y=++a; // let x=a++;

console.log(a+" "+ y);

Decrement (- -): Decrement ‘- -‘ operator decreases an integer value by one.

let A = 10 and Y = A - - then A = 9, Y=10

if A = 10 and Y = - - A then A = 9, Y=9

Example:

 let a = 10;

 let y=--a; // let x=a--;

console.log(a + " "+ x);

Unary (+): Unary ‘+’ is the fastest and preferred way of converting something into

a number

 +a means a is a positive number

Example:

let i = 3;

i1 = +i;

console.log(i1)

Negation (-): Negation ‘-‘ operator gives the negation of an operand.

 -a means a is a negative number

Example:

let i = 3;
i1 = -i;
console.log(i1)

• JS Assignment Operators

https://www.geeksforgeeks.org/exponentiation-arithmetic-operator-in-javascript/
https://www.geeksforgeeks.org/decrement-arithmetic-operator-in-javascript/
https://www.geeksforgeeks.org/javascript-arithmetic-unary-plus-operator/

167

The assignment operation evaluates the assigned value. Chaining the assignment

operator is possible in order to assign a single value to multiple variables

Assignment (=): This operator assigns the right operand value to the left operand.

 If A = 10 and Y = A then Y = 10

Example:

 let a = 2;

console.log(a);

Addition Assignment (+=): Sums up left and right operand values and then assigns

the result to the left operand.;

 Y += 1 gives Y = Y + 1

Example:

const b = 3;
console.log(a = b + 1);

Subtraction Assignment (- =): It subtracts the right side value from the left side

value and then assigns the result to the left operand.

 Y -= 1 gives Y = Y - 1

Example:

let b = 3;
console.log(a = b - 1);

Multiplication Assignment (*=): It multiplies a variable by the value of the right

operand and assigns the result to the variable.

 Y *= A is equivalent to Y = Y * A

Example:

let b = 3;
console.log(a = b - 1);

Division Assignment (/ =): It divides a variable by the value of the right operand and

assigns the result to the variable.

 Y /= A is equivalent to Y = Y / A

Example:

const moo = 2;
console.log(yoo = yoo / moo);

Modules/Remainder Assignment (% =): It divides a variable by the value of the

right operand and assigns the remainder to the variable.

 Y %= A is equivalent to Y = Y % A

Example:

Let yoo=4

console.log(yoo %= 2);

Exponentiation Assignment (** =): This raises the value of a variable to the power

of the right operand.

168

 Y **= A is equivalent to Y=Y ** A

Example:

 Let yoo=4

console.log(yoo **= 2);

Left Shift Assignment (<< =): It moves the specified amount of bits to the left and

assigns the result to the variable.

 Y <<= A is equivalent to Y=Y << A

Example:

Let yoo=4

console.log(yoo <<= 2);

Right Shift Assignment (>> =): It moves the specified amount of bits to the right

and assigns the result to the variable.

 Y >>= A is equivalent to Y = Y >> A

Example:

 Let yoo=4

console.log(yoo >>= 2);

Bitwise AND Assignment (& =): It does a bitwise AND operation on the operand,

and assigns the result to the variable.

 Y &= b is equivalent to Y = Y & A

Example:

 let y=10

 console.log(y &= 2);

Bitwise OR Assignment (| =): It does a bitwise OR operation on the operand, and

assigns the result to the variable.

 Y |= A is equivalent to Y= Y | b

Example:

 let y=10

 console.log(y |= 2);

Bitwise XOR Assignment (^ =): It does a bitwise XOR operation on the operand,

and assigns the result to the variable.

 Y ^= A is equivalent to Y= Y ^ A

Example:

 let y=10

 console.log(y ^= 2);

• JS Comparison Operators and JS Logical Operators:

Comparison and Logical operators are used to test for true or false.

169

Comparison Operators:

Comparison operators are used in logical statements to determine equality or difference

between variables or values.

OPERATOR NAME USAGE OPERATION

Equality Operator a==b Compares the equality of two operators

Inequality Operator a!=b Compares inequality of two operators

Strict Equality

Operator

a===b Compares both value and type of the operand

Strict Inequality

Operator

a!==b Compares inequality with type

Greater than Operator a>b Checks if the left operator is greater than the

right operator

Greater than or equal

Operator

a>=b Checks if the left operator is greater than or

equal to the right operator

Less than Operator a<b Checks if the left operator is smaller than the

right operator

Less than or equal

Operator

a<=b Checks if the left operator is smaller than or

equal to the right operator

Equality (==): This operator is used to compare the equality of two operands. If equal

then the condition is true otherwise false.

Example: Below example illustrates the (==) operator in JavaScript.

 // Illustration of (==) operator

let val1 = 5;

let val2 = '5';

// Checking of operands

console.log(val1 == 5); //true

console.log(val2 == 5); //true

console.log(val1 == val2); //true

// Check against null and boolean value

console.log(0 == false); //true

console.log(0 == null); //false

Inequality (!=): This operator is used to compare the inequality of two operands. If

equal then the condition is false otherwise true.

Example: Below examples illustrate the (!=) operator in JavaScript.

// Illustration of (!=) operator

let val1 = 5;

let val2 = '5';

// Checking of operands

console.log(val1 != 6); //true

console.log(val2 != '5'); //false

170

console.log(val1 != val2); //false

// Check against null and boolean value

console.log(0 != false); //false

console.log(0 != null); //true

Strict equality (===): This operator is used to compare the equality of two operands

with type. If both value and type are equal then the condition is true otherwise false.

Example: Below examples illustrate the (===) operator in JavaScript.

// Illustration of (===) operator

let val1 = 5;

let val2 = '5';

// Checking of operands

console.log(val1 === 6); //false

console.log(val2 === '5'); //true

console.log(val1 === val2); //false

// Check against null and boolean value

console.log(0 === false); //false

console.log(0 === null); //false

Strict inequality (!==): This operator is used to compare the inequality of two

operands with type. If both value and type are not equal then the condition is true

otherwise false.

Example: Below examples illustrate the (!==) operator in JavaScript.

// Illustration of (!==) operator

let val1 = 5;

let val2 = '5';

// Checking of operands

console.log(val1 !== 6); //true

console.log(val2 !== '5'); //false

console.log(val1 !== val2); //true

// Check against null and boolean value

console.log(0 !== false); //true

console.log(0 !== null); //true

Greater than (>): This operator is used to check whether the left-side value is greater

than the right-side value. If the value is greater then the condition is true otherwise

false.

Example: Below examples illustrate the (>) operator in JavaScript.

// Illustration of (>) operator

let val1 = 5;

let val2 = "5";

// Checking of operands

console.log(val1 > 0); //true

console.log(val2 > "10"); //true

https://www.geeksforgeeks.org/strict-inequality-comparison-operator-in-javascript/

171

console.log(val1 > "10"); //false

console.log(val2 > 0); //true

Greater than or equal (>=): This operator is used to check whether the left side

operand is greater than or equal to the right side operand. If the value is greater than

or equal then the condition is true otherwise false.

Example: Below examples illustrate the (>=) operator in JavaScript.

// Illustration of (>=) operator

let val1 = 5;

let val2 = "5";

// Checking of operands

console.log(val1 >= 5); //true

console.log(val2 >= "15"); //true

console.log(val1 >= "5"); //true

console.log(val2 >= 15); //false

Less than operator (<): This operator is used to check whether the left-side value is

less than the right-side value. If yes then the condition is true otherwise false.

Example: Below examples illustrate the (<) operator in JavaScript.

// Illustration of (<) operator

let val1 = 5;

let val2 = "5";

// Checking of operands

console.log(val1 < 15); //true

console.log(val2 < "0"); //false

console.log(val1 < "0"); //false

console.log(val2 < 15); //true

Less than or equal operator (<=): This operator is used to check whether the left side

operand value is less than or equal to the right side operand value. If yes then the

condition is true otherwise false.

Example: Below examples illustrate the (<=) operator in JavaScript.

// Illustration of (<=) operator

let val1 = 5;

let val2 = "5";

// Checking of operands

console.log(val1 <= 15); //true

console.log(val2 <= "0"); //false

172

console.log(val1 <= "0"); //false

console.log(val2 <= 15); //true

JS Logical Operators:

There are three types of logical operators in JavaScript:

• !(NOT): Converts operator to Boolean and returns flipped value

• &&:(AND): Evaluates operands and return true only if all are true

• ||(OR): Returns true even if one of the multiple operands is true

NOT(!) Operator: It reverses the Boolean result of the operand (or condition). It

Converts the operand to Boolean type i.e, true/false

Syntax:

 result = !value; // Can have single argument

Example:

 // !(NOT) operator

let a = 1;

console.log(!a); //false

AND (&&) Operator: It accepts multiple arguments and it evaluates the operands

from left to right. And for each operand, it will first convert it to a Boolean. If the

result is false, stops and returns the original value of that operand. Otherwise, if all

were truthy it will return the last truthy value.

Syntax:

 result = a && b; // Can have multiple arguments.

Example: The operator checks for the values from left to right and returns the value

if the result is false and if the result is true, it will return the last value.

// &&(AND) operator

console.log(0 && 1); // 0

console.log(1 && 3); // 3

console.log(null && true); // null

console.log(1 && 2 && 3 && 4); // 4

OR (||) Operator: The ‘OR’ operator is somewhat opposite of the ‘AND’ operator. It

evaluates the operand from left to right. And for each operand, it will first convert it

to a Boolean. If the result is true, stops and returns the original value of that operand.

Otherwise, if all the values are false, it will return the last value.

Syntax:

 result = a || b;

Example: The operator checks the values from left to right and if the result is true

returns the original value and if false returns the last value of operands.

// ||(OR) Operator

console.log(0 || 1); // 1

console.log(1 || 3); // 1

console.log(null || true); // true

console.log(-1 || -2 || -3 || -4); // -1

173

• JS Ternary Operators

The “Question mark” or “conditional” operator in JavaScript is a ternary operator that

has three operands. It is the simplified operator of if/else.

Examples:

Input: let result = (10 > 0) ? true : false;

Output: true

Input: let message = (20 > 15) ? "Yes" : "No";

Output: Yes

Syntax:

Condition ? value if true : value if false

• condition: Expression to be evaluated which returns a boolean value.

• value if true: Value to be executed if the condition results in a true state.

• value if false: Value to be executed if the condition results in a false state.

Characteristics of Ternary Operator

• The expression consists of three operands: the condition, value if true, and

value if false.

• The evaluation of the condition should result in either true/false or a

Boolean value.

• The true value lies between “?” & “:” and is executed if the condition

returns true. Similarly, the false value lies after “:” and is executed if the

condition returns false.

Example: Below is an example of the Ternary Operator.

let PMarks = 40

let result = (PMarks > 39) ? "Pass" : "Fail";

console.log(result);

• JS Bitwise Operators

The bitwise operators in JavaScript are:

1. Bitwise AND (&):

Syntax: a & b

Description: Sets each bit to 1 if both bits are 1.

Example:

let a = 5; // In binary: 0101

let b = 3; // In binary: 0011

console.log(a & b); // Bitwise AND: 0101 & 0011 = 0001 (Decimal: 1)

2. Bitwise OR (|):

Syntax: a | b

Description: Sets each bit to 1 if at least one of the corresponding bits is 1.

Example:

 let a = 5; // In binary: 0101

let b = 3; // In binary: 0011

console.log(a | b); // Bitwise OR: 0101 | 0011 = 0111 (Decimal: 7)

174

3. Bitwise XOR (^):

Syntax: a ^ b

Description: Sets each bit to 1 if only one of the corresponding bits is 1.

Example:

 let a = 5; // In binary: 0101

let b = 3; // In binary: 0011

 console.log(a ^ b); // Bitwise XOR: 0101 ^ 0011 = 0110 (Decimal: 6)

4. Bitwise NOT (~):

Syntax: ~a

Description: Inverts all the bits in the operand.

Example:

 let a = 5; // In binary: 0101

let b = 3; // In binary: 0011

console.log(~a); // Bitwise NOT: ~0101 = 1010 (Decimal: -6)

5. Left Shift (<<):

Syntax: a << b

Description: Shifts the bits of a to the left by b positions. The vacant bits on the right

are filled with zeros.

Example:

 let a = 5; // In binary: 0101

let b = 3; // In binary: 0011

console.log(a << 1); // Left Shift: 0101 << 1 = 1010 (Decimal: 10)

6. Sign-propagating Right Shift (>>):

Syntax: a >> b

Description: Shifts the bits of a to the right by b positions. The vacant bits on the left

depend on the sign bit (sign-propagating).

Example:

let a = 5; // In binary: 0101

let b = 3; // In binary: 0011

console.log(a >> 1); // Right Shift: 0101 >> 1 = 0010 (Decimal: 2)

7. Zero-fill Right Shift (>>>):

Syntax: a >>> b

Description: Shifts the bits of a to the right by b positions. The vacant bits on the left

are filled with zeros.

Example:

let a = 5; // In binary: 0101

let b = 3; // In binary: 0011

console.log(a >>> 1); // Zero-fill Right Shift: 0101 >>> 1 = 0010 (Decimal: 2)

JS Data Types:

175

In JavaScript, there are several data types that define the kinds of values used in

programming. These data types can be broadly categorized into two main groups:

primitive types and non-primitive types (also known as reference types).

Primitive Data Types:

Number: The number type in JavaScript contains both integer and floating-point

numbers. Besides these numbers, we also have some ‘special-numbers’ in javascript

that are: ‘Infinity’, ‘-Infinity’, and ‘NaN’. Infinity basically represents the

mathematical ‘?’. The ‘NaN’ denotes a computational error.

Example:

let num = 2; // Integer

let num2 = 1.3; // Floating point number

let num3 = Infinity; // Infinity

let num4 = 'something here too'/2; // NaN
String:

A String in JavaScript is basically a series of characters that are surrounded by

quotes. There are three types of quotes in JavaScript, which are:

Example:

let str = "Hello There";

let str2 = 'Single quotes works fine';

let phrase = `can embed ${str}`;

There’s no difference between ‘single’ and “double” quotes in JavaScript. Backticks

provide extra functionality as with their help of them we can embed variables inside

them.
Boolean:

The Boolean type has only two values: true and false. This data type is used to store

yes/no values: true means “yes, correct”, and false means “no, incorrect”.

Example:

let isCoding = true; // yes

let isOld =false; // no
NULL:

The special null value does not belong to any of the default data types. It forms a

separate type of its own which contains only the null value:

Example:

 let age = null;

The ‘null’ data type basically defines a special value that represents ‘nothing’,

’empty’, or ‘value unknown’. Undefined Just like null, Undefined makes its own

type. The meaning of undefined is ‘value is not assigned’.

Example:

let x;

console.log(x); // undefined
BigInt:

176

BigInt is a built-in object in JavaScript that provides a way to represent whole

numbers larger than 253-1. The largest number that JavaScript can reliably represent

with the Number primitive is 253-1, which is represented by the

MAX_SAFE_INTEGER constant.

Example:

let bigBin = BigInt("0b1010101001010101001111111111111111");

// 11430854655n

console.log(bigBin);
Symbol:

Symbols are new primitive built-in object types introduced as part of ES6. Symbols

return unique identifiers that can be used to add unique property keys to an object that

won’t collide with keys of any other code that might add to the object. They are used

as object properties that cannot be recreated. It basically helps us to enable

encapsulation or information hiding.

Example:

let symbol1 = Symbol("Geeks")

let symbol2 = Symbol("Geeks")

// Each time Symbol() method

// is used to create new global Symbol

console.log(symbol1 == symbol2); // False

Non-Primitive Data Types:

The data types that are derived from primitive data types of the JavaScript language

are known as non-primitive data types. It is also known as derived data types or

reference data types.

Object: It is the most important data type and forms the building blocks for modern

JavaScript

Syntax: new Object(value)

 Object(value)

,

 ...

 }

 let object_name = {

 key_name : value

Note:- Object() can be called with or without new. Both create a new object.

Example:

const o = new Object();

177

o.foo = 42;

console.log(o); // { foo: 42 }

• JS typeof Operator

In JavaScript, the typeof operator returns the data type of its operand in the form of

a string. The operand can be any object, function, or variable.

Syntax:

typeof operand

OR

typeof (operand)

Note: Operand is an expression representing the object or primitive whose type is to

be returned.

The possible types that exist in JavaScript are:

• undefined

• Object

• Boolean

• number

• string

• symbol

• function

Example: This example checks the typeof of a string, number, and undefined object

and returns the value in the console.

// "string"

console.log(typeof ('mukul')) //string

// "number"

console.log(typeof 25) //number

// "undefined"

console.log(typeof variable) //undefined

Literals and Type Casting in JavaScript:

JavaScript Literals:

JavaScript Literals are the fixed value that cannot be changed, you do not need to

specify any type of keyword to write literals. Literals are often used to initialize

variables in programming, names of variables are string literals.

A JavaScript Literal can be a numeric, string, floating-point value, a boolean value

or even an object.

178

In simple words, any value is literal, if you write a string "mcc" is a literal, any number

like 7007 is a literal, etc.

Numeric Literals: These represent numbers. For instance:

Example:

let num = 10; // Integer literal

let floatNum = 3.14; // Floating-point literal

String Literals: These represent textual data enclosed in single or double quotes:

Example:

let str = 'Hello, World!'; // Single-quoted string literal

let anotherStr = "JavaScript is awesome!"; //Double-quoted string literal

Boolean Literals: These represent boolean values, which can be either true or false:

Example:

let isTrue = true; // Boolean literal representing true

let isFalse = false; // Boolean literal representing false

Null Literal: Represents a null value:

Example:

let nullValue = null; // Null literal

Undefined Literal: Represents a variable that has been declared but not assigned a

value:

Example:

let undefinedValue; // Undefined literal (implicitly assigned)

Type Casting in JavaScript:

In programming, type conversion is the process of converting data of one type

to another.

For example: converting String data to Number.

There are two types of type conversion in JavaScript.

o Implicit Conversion - automatic type conversion

o Explicit Conversion - manual type conversion

JavaScript Implicit Conversion:

 In certain situations, JavaScript automatically converts one data type to another (to

the right type). This is known as implicit conversion.

Example1: Implicit Conversion to String

// numeric string used with + gives string type

let result;

result = '3' + 2;

console.log(result) // 32

result = '3' + true;

console.log(result); // 3true

result = '3' + undefined;

console.log(result); // 3undefined

179

result = '3' + null;

console.log(result); // 3null

Note: When a number is added to a string, JavaScript converts the number to a string

before concatenation.

Example 2: Implicit Conversion to Number

// numeric string used with - , / , *,% results number type

let result;

result = '4' – '2';

console.log(result); // 2

result = '4' - 2;

console.log(result); // 2

result = '4' * 2;

console.log(result); // 8

result = '4' / 2;

console.log(result); // 2

Example 3: Non-numeric String Results to NaN

// non-numeric string used with - , / , * results to NaN

let result;

result = 'hello' - 'world';

console.log(result); // NaN

result = '4' - 'hello';

console.log(result); // NaN

Example 4: Implicit Boolean Conversion to Number

// if boolean is used, true is 1, false is 0

let result;

result = '4' - true;

console.log(result); // 3

result = 4 + true;

console.log(result); // 5

result = 4 + false;

console.log(result); // 4

Note: JavaScript considers 0 as false and all non-zero number as true. And, if true is

converted to a number, the result is always 1.

Example 5: null Conversion to Number

// null is 0 when used with number

180

let result; result = 4 + null;

console.log(result); // 4

result = 4 - null;

console.log(result); // 4

Example 6: undefined used with number, boolean or null

// Arithmetic operation of undefined with number, boolean or null gives NaN

let result;

result = 4 + undefined;

console.log(result); // NaN

result = 4 - undefined;

console.log(result); // NaN

result = true + undefined;

console.log(result); // NaN

result = null + undefined;

console.log(result); // NaN

JavaScript Explicit Conversion:

You can also convert one data type to another as per your needs. The type conversion

that you do manually is known as explicit type conversion. In JavaScript, explicit

type conversions are done using built-in methods.

Here are some common methods of explicit conversions.

1. Convert to Number Explicitly:

To convert numeric strings and Boolean values to numbers, you can use Number().

For example,

let result;

// string to number

result = Number('324');

console.log(result); // 324

result = Number('324e-1')

console.log(result); // 32.4

// boolean to number

result = Number(true);

console.log(result); // 1

result = Number(false);

console.log(result); // 0

In JavaScript, empty strings and null values return 0.

181

For example,

let result;

result = Number(null);

console.log(result); // 0

let result = Number(' ')

console.log(result); // 0

If a string is an invalid number, the result will be NaN.

For example,

let result;

result = Number('hello');

console.log(result); // NaN

result = Number(undefined);

console.log(result); // NaN

result = Number(NaN);

console.log(result); // NaN

Note: You can also generate numbers from strings using parseInt(), parseFloat(),

unary operator + and Math.floor().

For example,

let result;

result = parseInt('20.01');

console.log(result); // 20

result = parseFloat('20.01');

console.log(result); // 20.01

result = +'20.01';

console.log(result); // 20.01

result = Math.floor('20.01');

console.log(result); // 20

2. Convert to String Explicitly

To convert other data types to strings, you can use either String() or toString().

For example,

//number to string

let result;

result = String(324);

console.log(result); // 324

result = String(2 + 4);

console.log(result); // 6

//other data types to string

result = String(null);

console.log(result); // null

182

result = String(undefined);

console.log(result); // undefined

result = String(NaN);

console.log(result); // NaN

result = String(true);

console.log(result); // true

result = String(false);

console.log(result); // false

// using toString()

result = (324).toString();

console.log(result); // 324

result = true.toString();

console.log(result); // true

Note: String() takes null and undefined and converts them to string. However,

toString() gives error when null are passed.

3. Convert to Boolean Explicitly

 To convert other data types to a Boolean, you can use Boolean().

 In JavaScript, undefined, null, 0, NaN, '' converts to false.

 For example,

let result;

result = Boolean(' ');

console.log(result); // false

result = Boolean(0);

console.log(result); // false

result = Boolean(undefined);

console.log(result); // false

result = Boolean(null);

console.log(result); // false

result = Boolean(NaN);

console.log(result); // false

All other values give true.

For example,

result = Boolean(324);

console.log(result); // true

result = Boolean('hello');

console.log(result); // true

183

result = Boolean(' ');

console.log(result); // true

Type Coercion in JavaScript :

Type Coercion refers to the process of automatic or implicit conversion of values

from one data type to another. This includes conversion from Number to String,

String to Number, Boolean to Number etc.

Example: 1. Number to String Conversion:
var x = 10 + '20';
var y = '20' + 10;
var z = true + '10';
console.log(x); //1020
console.log(y); //2010
console.log(z); //true10

2. String to Number Conversion:

Example:

var w = 10 - '5';

var x = 10 * '5';
var y = 10 / '5';
var z = 10 % '5';
console.log(w); //5
console.log(x); //50
console.log(y); //2
console.log(z); //0

3. Boolean to Number:

Example:

var x = true + 2;
var y = false + 2;
console.log(x); //3
console.log(y); //2

JS Functions:

JavaScript function is a set of statements that take inputs, do some specific

computation, and produce output.

A JavaScript function is executed when “something” invokes it (calls it).

Example 1: A basic JavaScript function, here we create a function that divides the

1st element by the second element.

function myFun(g1, g2) {

 return g1 / g2;

}

const value = myFun(8, 2); // Calling the function

184

console.log(value); //4

JavaScript allows us to create user-defined functions also. We can create

functions in JavaScript using the keyword “function”.

Syntax: The basic syntax to create a function in JavaScript is shown below.

function functionName(Parameter1, Parameter2, ...)

{

 // Function body

}

Function Invocation:

• Triggered by an event (e.g., a button click by a user).

• When explicitly called from JavaScript code.

• Automatically executed, such as in self-invoking functions.

Function Definition:

A function definition is sometimes also termed a function declaration or function

statement. Below are the rules for creating a function in JavaScript:

• Every function should begin with the keyword function followed by,

• A user-defined function name that should be unique,

• A list of parameters enclosed within parentheses and separated by commas,

• A list of statements composing the body of the function enclosed within

curly braces {}.

Example 2: This example shows a basic declaration of a function in javascript.

function calcAddition(number1, number2) {

 return number1 + number2;

}

console.log(calcAddition(6,9)); //15

Function Declaration: It declares a function with a function keyword. The function

declaration must have a function name.

Syntax:

function fun (param A, param B) {

 // Set of statements

}

Function Expression:

It is similar to a function declaration without the function name. Function

expressions can be stored in a variable assignment.

Syntax:

let fun= function(paramA, paramB) {

 // Set of statements

}

Example 3: This example explains the usage of the Function expression.

let square = function (number) {

 return number * number;

};

185

let x = square(4); // x gets the value 16

console.log(x); //16

Functions as Variable Values:

Functions can be used the same way as you use variables.

Example:

// Function to convert Fahrenheit to Celsius

function toCelsius(fahrenheit) {

 return (fahrenheit - 32) * 5/9;

 }

 // Using the function to convert temperature

 let temperatureInFahrenheit = 77;

 let temperatureInCelsius = toCelsius(temperatureInFahrenheit);

 let text = "The temperature is " + temperatureInCelsius + " Celsius";

 console.log(text); // The temperature is 25 Celsius

Arrow Function:

It is one of the most used and efficient methods to create a function in JavaScript

because of its comparatively easy implementation. It is a simplified as well as a more

compact version of a regular or normal function expression or syntax.

Syntax:

 let function_name = (argument1, argument2 ,..) => expression

Example 4: This example describes the usage of the Arrow function.

const fun=(x, y) => x * y;

document.write(fun(40,5));

JS Methods:

JavaScript Object Methods

Object Methods in JavaScript can be accessed by using functions. Functions in

JavaScript are stored as property values. The objects can also be called without

using brackets ().

• In a method, ‘this’ refers to the owner object.

• Additional information can also be added along with the object method.

Syntax: objectName.methodName()

Properties: A function may be divided into different property values, which are

then combined and returned together.

Example: The student function contains the properties:

• name

186

• class

• section

Return Value: It returns methods/functions stored as object properties.

Example 1: This example uses function definition as the property value.

// Object creation

let student = {

 name: "Nur",

 class: "5th",

 section: "A",

 studentDetails: function () {

 return this.name + " " + this.class + " " + this.section + " ";

 }

};

// Display object data

console.log(student.studentDetails()); // Nur 5th A

Example 2: Using function definition as property value and accessing with additional

details.

// Object creation

let student = {

 name: "Martin",

 class: "12th",

 section: "A",

 studentDetails: function () {

 return this.name + " " + this.class + " " + this.section + " ";

 }

};

 // Display object data

console.log("STUDENT " + student.studentDetails())

// STUDENT Martin 12th A

JavaScript String Methods

JavaScript String Length

The length property returns the length of a string:

Example

let text = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

let length = text.length;

document.write(length);

JavaScript String slice():

slice() extracts a part of a string and returns the extracted part in a new string.

The method takes 2 parameters: start position, and end position (end not included).
Example

187

//Slice out a portion of a string from position 7 to position 13:

let text = "Apple, Banana, Kiwi";

let part = text.slice(7, 13);

document.write(part); // Banana

Note: JavaScript counts positions from zero. First position is 0. Second position

is 1.

Examples

//If you omit the second parameter, the method will slice out the rest of the string:

let text = "Apple, Banana, Kiwi";

let part = text.slice(7);

document.write(part); // Banana, Kiwi

//If a parameter is negative, the position is counted from the end of the string:

let text = "Apple, Banana, Kiwi";

let part = text.slice(-12);

document.write(part); // Banana, Kiwi

//This example slices out a portion of a string from position -12 to position -6:

let text = "Apple, Banana, Kiwi";

let part = text.slice(-12, -6);

document.write(part); // Banana

JavaScript String substring():

substring() is similar to slice().

The difference is that start and end values less than 0 are treated as 0

in substring().

Example

let str = "Apple, Banana, Kiwi";

let part = str.substring(7, 13);

document.write(part); // Banana

Replacing String Content:

The replace() method replaces a specified value with another value in a string:

Example

let text = "Please visit Microsoft!";

let newText = text.replace("Microsoft", "W3Schools");

document.write(newText); // Please visit W3Schools!

JavaScript String ReplaceAll():

188

In 2021, JavaScript introduced the string method replaceAll():

Example:

let text = "I love cats. Cats are very easy to love. Cats are very popular.\n"

console.log(text);

text = text.replaceAll("Cats","Dogs");

text = text.replaceAll("cats","dogs");

console.log(text);

Converting to Upper and Lower Case:

A string is converted to upper case with toUpperCase():

A string is converted to lower case with toLowerCase():

JavaScript String toUpperCase()

Example

let text1 = "Hello World!";

let text2 = text1.toUpperCase();

console.log(text2); // HELLO WORLD!

JavaScript String toLowerCase():

Example

let text1 = "Hello World!"; // String

let text2 = text1.toLowerCase(); // text2 is text1 converted to lower

console.log(text2); // hello world!

JavaScript String concat():

concat() joins two or more strings:

Example:

let text1 = "Hello";

let text2 = "World";

let text3 = text1.concat(" ", text2);

console.log(text3); // Hello World

JavaScript String trim():

The trim() method removes whitespace from both sides of a string:

Example

let text1 = " Hello World! ";

let text2 = text1.trim();

console.log(text2); // Hello World!

JS Events:

JavaScript Events:

189

The change in the state of an object is known as an Event. In html, there are various

events which represents that some activity is performed by the user or by the browser.

When JavaScript code is included in HTML, JS react over these events and allow the

execution. This process of reacting over the events is called Event Handling. Thus, JS

handles the HTML events via Event Handlers.

Example: when a user clicks over the browser, add JS code, which will execute the

task to be performed on the event.

Some of the HTML events and their event handlers are:

Mouse events:

Event

Performed

Event

Handler

Description

click onclick When mouse click on an element

mouseover onmouseover When the cursor of the mouse comes over the

element

mouseout onmouseout When the cursor of the mouse leaves an element

mousedown onmousedown When the mouse button is pressed over the

element

mouseup onmouseup When the mouse button is released over the

element

mousemove onmousemove When the mouse movement takes place.

Click Event Example:

<!doctype html>

<html>

<head>

 <script>

 function hiThere() {

 document.write('Hi there!');

 }

 </script>

</head>

<body>

 <button type="button"

 onclick="hiThere()"

 style="margin-left: 50%;">

 Click me event

 </button>

190

</body>

</html>Keyboard events:
Event

Performed

Event Handler Description

Keydown

& Keyup

onkeydown &

onkeyup

When the user press and then release the key

Keydown Event Example:
<html>

<head> Javascript Events</head>

<body>

<input type="text" onkeydown="keydown()"/>

<script>

 function keydown()

 {

 document.write("Pressed a down key");

 }

</script>

</body>

</html>

Form events:

Focus Event Example:

<html>

<head> Javascript Events</head>

<body>

<h2> Enter something here</h2>

<input type="text" onfocus="focusevent()"/>

<script>

 function focusevent()

Event

Performed

Event

Handler

Description

focus onfocus When the user focuses on an element

submit onsubmit When the user submits the form

blur onblur When the focus is away from a form element

change onchange When the user modifies or changes the value

of a form element

191

 {

 document.write("This is focusevent");

 }

</script>

</body>

</html>

Onsubmit Event Example:
<!DOCTYPE html>

<html>

<body>

<form onsubmit="a()">

 <input type="text">

 <input type="submit" value="Submit">

</form>

<script>

function a() {

 document.write("submitted successfully");

}

</script>

</body>

</html>

Window/Document events

Load

event

Example:

<html>

<body onload="window.alert('Page successfully loaded');">

<script>

document.write("The page is loaded successfully");

</script>

</body>

</html>

Event

Performed

Event

Handler

Description

load onload When the browser finishes the loading of the page

unload onunload When the visitor leaves the current webpage, the

browser unloads it

resize onresize When the visitor resizes the window of the

browser

192

JS Array and Dialog Boxes:

JavaScript Array:

JavaScript Array is a single variable that is used to store elements of different data

types. JavaScript arrays are zero-indexed. Javascript Arrays are not associative in

nature.

Declaration of an Array:

There are basically two ways to declare an array.

1. Creating an array using array literal:

 let arrayName = [value1, value2, ...];

Example:

// Initializing while declaring

let courses = ["HTML", "CSS", "Javascript", "React"];

console.log(courses);

2. Creating an array using the JavaScript new keyword:

 let arrayName = new Array();

Example:

// Initializing while declaring

let arr1 = new Array(3)

arr1[0] = 10

arr1[1] = 20

arr1[2] = 30

console.log("Array 1: ", arr1);

// Creates an array having elements 10, 20, 30, 40, 50

let arr2 = new Array(10, 20, 30, 40, 50);

console.log("Array 2: ", arr2);

// Creates an array of 5 undefined elements

let arr3 = new Array(5);

console.log("Array 3: ", arr3)

// Creates an array with one element

let arr4 = new Array("1BHK","abc");

console.log("Array 4: ", arr4);

Accessing Elements of an Array:

Any element in the array can be accessed using the index number. The index in the

arrays starts with 0.

Example:

const courses = ["HTML", "CSS", "Javascript"];

console.log(courses[0]);

console.log(courses[1]);

console.log(courses[2]);

193

Change elements from a pre-defined array
Example: In the given example, we have changed the value of the first element that is

‘CSS’ to ‘MCC’

const courses = ["HTML", "CSS", "Javascript"];
console.log(courses);
courses[1]= "MCC";
console.log(courses);

Increase and decrease the length of an array:

Example: In the given example, We have increased and decreased the length of an

array using the JavaScript’s length property.

const courses = ["HTML", "CSS", "Javascript"];

courses.length = 5 // Increasing array length to 5

console.log("Array after increased length: " ,courses);

courses.length = 2 // Decreasing array length to 2

console.log("Array after decreased length: " ,courses);

We can also update an array after initialization:

Example:

const courses = ["HTML", "CSS", "Javascript"];

courses.length = 5 // Increasing array length to 5

console.log("Array after increased length: " ,courses);

courses[3] = 'PhP';

courses[4] = 'React';

console.log("Array after initializing: ", courses);

Loop through Javascript Array Elements:

Example: In the given example, We have looped through the elements of a Javascript

array using the for loop:

const courses = ["HTML", "CSS", "Javascript"];

for (let i = 0; i < courses.length; i++) {

 console.log(courses[i]);

}

Arrays are Objects:

Example: In the given example, The Javascript typeof operator returns “object” for

arrays.

const courses = ["HTML", "CSS", "Javascript"];

console.log(typeof courses);

JS Dialog Boxes:

Dialogue boxes are a kind of popup notification, this kind of informative

functionality is used to show success, failure, or any particular/important

194

notification to the user.

JavaScript uses 3 kinds of dialog boxes:

• Alert

• Prompt

• Confirm

These dialog boxes can be of very much help in making our website look more

attractive.

Alert Box: An alert box is used on the website to show a warning message to the

user that they have entered the wrong value other than what is required to fill in that

position. Nonetheless, an alert box can still be used for friendlier messages. The

alert box gives only one button “OK” to select and proceed.

Example:

 <script type="text/javascript">

 function Warning() {

 alert ("Warning danger you have not filled everything");

 console.log ("Warning danger you have not filled everything");

 }

 </script>

<p>Click the button to check the Alert Box functionality</p>

<form>

 <input type="button" value="Click Me" onclick="Warning();" />

</form>

Confirm box:

A confirm box is often used if you want the user to verify or accept something. When

a confirm box pops up, the user will have to click either “OK” or “Cancel” to

proceed. If the user clicks on the OK button, the window method confirm() will

return true. If the user clicks on the Cancel button, then confirm() returns false and

will show null.

Example:

<script type="text/javascript">

 function Confirmation() {

 var Val = confirm("Do you want to continue ?");

 if (Val == true) {

 console.log(" CONTINUED!");

 return true;

 } else {

 console.log("NOT CONTINUED!");

 return false;

 }

 }

</script>

195

<p>Click the button to check the Confirm Box functionality</p>

<form>

 <input type="button" value="Click Me" onclick="Confirmation();" />

</form>

Prompt Box:

A prompt box is often used if you want the user to input a value before entering a

page. When a prompt box pops up, the user will have to click either “OK” or

“Cancel” to proceed after entering an input value. If the user clicks the OK button,

the window method prompt() will return the entered value from the text box. If the

user clicks the Cancel button, the window method prompt() returns null.

Example:

<script type="text/javascript">

 function Value(){

 var Val = prompt("Enter your name : ", "Please enter your name");

 console.log("You entered : " + Val);

 }

</script>

<p>Click the button to check the Prompt Box functionality</p>

<form>

 <input type="button" value="Click Me" onclick="Value();" />

</form>

Relating JavaScript to DHTML:

DHTML stands for Dynamic HTML. Dynamic means that the content of the web

page can be customized or changed according to user inputs i.e. a page that is

interactive with the user. In earlier times, HTML was used to create a static page. It

only defined the structure of the content that was displayed on the page. With the help

of CSS, we can beautify the HTML page by changing various properties like text size,

background color, etc. The HTML and CSS could manage to navigate between static

pages but couldn’t do anything else.

If 1000 users view a page that had their information for eg. Admit card then there was

a problem because 1000 static pages for this application build to work. As the number

of users increases, the problem also increases, and at some point, it becomes

impossible to handle this problem. To overcome this problem, DHTML came into

existence.

 DHTML included JavaScript along with HTML and CSS to make the page

dynamic. This combo made the web pages dynamic and eliminated the problem of

creating static pages for each user. To integrate JavaScript into HTML, a Document

Object Model (DOM) is made for the HTML document. In DOM, the document is

represented as nodes and objects which are accessed by different languages like

JavaScript to manipulate the document.

196

HTML document include JavaScript:

The JavaScript document is included in our html page using the html tag. <src> tag

is used to specify the source of external JavaScript file. Following are some of the

tasks that can be performed with JavaScript:

• Performing html tasks

• Performing CSS tasks

• Handling events

• Validating inputs

Example 1: Example to understand how to use JavaScript in DHTML.

<h1>

 MidnaporeCityCollege

</h1>

<p id = "mcc">

 Hello MCC!

</p>

<script>

 document.getElementById("mcc").innerHTML =

"A bachelor of computer application portal for mcc";

</script>

Explanation: In the above example, change the text of the paragraph using id. A

document is an object of HTML that is displayed in the current window or object of

DOM. The getElementById(id) gives the element id. The innerHTML defines the

content within the id element. The id attribute is used to change an HTML document

and its property. Paragraph content changed by document id. For example

document.getElementById("mcc").style.color = "blue"; It is used to set the paragraph

color using the id of elements.

197

Example 2: Creating an alert on click of a button.

<h1 id = "para1" >

 MidnaporeCityCollege

</h1>

<input type = "Submit" onclick = "Click()"/>

<script>

 function Click() {

 document.getElementById("para1").style.color = "green";

 window.alert("Color changed to green");

 }

</script>

Dynamically Changing Text, Style, Content:

Dynamically Changing Text in JS:

Example:

Dynamically changing text in JavaScript involves accessing an HTML element and

modifying its text content using JavaScript. Here's a simple example:

<!DOCTYPE html>

<html>

<head>

 <title>Dynamically Changing Text</title>

</head>

<body>

 <h1 id="mcc">Original Text</h1>

 <button onclick="changeText()">Change Text</button>

 <script>

 // JavaScript code to dynamically change text

 function changeText() {

 let dynamicElement = document.getElementById('mcc');

 dynamicElement.textContents = 'New Text'; // Change the text content

 }

 </script>

</body>

</html>

In the above example:

• There's an <h1> element with an ID of "mcc" that initially contains the text

"Original Text."

• Below the heading, there's a button that, when clicked, triggers the changeText()

function.

• Inside the changeText() function, JavaScript fetches the element with the ID

"mcc" using document.getElementById('mcc').

198

• It then modifies the text content of that element using

dynamicElement.textContent = 'New Text'

Dynamically Changing style in JavaScript:

In JavaScript, you can dynamically change the style of HTML elements by accessing

their style properties and modifying them. There are various ways to achieve this.

Here's an example of how you can dynamically change the style of an HTML element:

Let's say you have an HTML element with the ID "myElement" that you want to change

dynamically:

<h1 id="myElement">This is the element whose style will change.</h1>

<button onclick="changeStyle()">Change Style</button>

<script>

 function changeStyle() {

 var element = document.getElementById('myElement');

 // Modify the style properties dynamically

 element.style.color = 'red';

 element.style.backgroundColor = 'yellow';

 // Add or remove other styles as needed...

 }

</script>

