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Abstract
The health system is burdened by kidney disease (KD), which has considerable 
economic consequences. The aging population and the rise in Type  2 diabetes 
and hypertension are the main contributing causes. KD is also associated with an 
increased risk of cardiovascular diseases (CVDs) morbidity, early mortality, and 
reduced quality of life. Recent studies estimate that more than 850 million people 
worldwide are affected by kidney-related illnesses each year. Of these, about 3.9 
million individuals are going through dialysis or kidney transplantations, neither of 
which provides an ultimate solution. Alternative therapeutic approaches through 
medications include the use of angiotensin-converting enzyme inhibitors and 
Angiotensin II receptor blockers, renin inhibitors, anti-inflammatory medicines, and 
bioactive phytocompounds isolated from several plants. Plants contain numerous 
bioactive compounds that are thought to provide a variety of health benefits, 
including potential nephroprotective properties. In this review, recent advancements 
in kidney disease (KD) research will be highlighted, including newly identified causes, 
renal pathophysiological alterations, and current therapeutic approaches.

Keywords: Kidney disease; Phytocompounds; Nephroprotective; Anti-inflammatory

1. Introduction
Acute kidney injury (AKI) is a syndrome characterized by reduced urine production and 
the accumulation of nitrogen metabolism end products, such as urea and creatinine in 
renal tubules.1 At the initial phase of injury and inflammation, circulating immune cells 
(T- and B-cells) infiltrate the kidney, drawn in by cytokines, chemokines, and damage-
associated molecular patterns (DAMPs) generated by wounded cells. DAMPs contribute 
to a pro-fibrotic environment by interacting with activated monocytes/macrophages, 
damaged tubular epithelial cells (TECs), and endothelial cells. This environment 
stimulates pericytes to proliferate and differentiate into myofibroblasts, which causes 
extracellular matrix (ECM) protein deposition, renal fibrosis, and progression to 
chronic kidney disease (CKD). TECs may have a pro-fibrotic phenotype and become 
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atrophic as a result of aberrant repair pathways. Pro-
fibrotic cytokines, including connective tissue growth 
factor and transforming growth factor-β (TGF-β), may be 
produced by G2/M-arrested TECs through activation of 
JNK signaling. Cell cycle arrest may dictate the course of 
damage, whereas favorable cell cycle events may determine 
the healing. Dysregulated and inefficient tubular repair 
has been associated with the converging of tubular cells 
toward a pro-fibrotic and senescent phenotype, sustained 
inflammation, and ECM deposition.2,3

It has been noted that regardless of the cause, patients 
with AKI are more likely to develop CKD, end-stage renal 
disease (ESKD), and premature mortality.4 At present, 850 
million individuals are suffering from KD and its related 
illnesses, including the 3.9 million receiving regular dialysis 
or kidney transplantation.5 Globally, the anticipated 
number of individuals with diabetes in 2015 was 415 
million, or 8.8% of the total population. This is more than 
double the 4.6% (151 million) estimated in 2000, and by 
2040, the figure is predicted to rise to 10.4% (642 million). 
One well-known example of a chronic multisystemic 
illness linked to an increased risk factor of CVD is CKD. 
According to clinical and experimental evidence, CKD 
increases oxidative stress and promotes an inflammatory 
state, both of which are critical factors in the development 
of CVD in uremia.6,7

CKD is marked by vasculopathy, renal interstitial 
fibrosis, tubular atrophy, and glomerulosclerosis, 
leading to impaired kidney regeneration. Renal fibrosis 
is histologically indicative of the onset of KD, albeit the 
underlying mechanisms are yet unknown.8 Over the 
last few decades, research on animals and molecules 
has expanded our knowledge of the pathophysiology of 
AKI, identifying oxidative stress, endothelial damage, 
mitochondrial injury, and innate immunity as primary 
causes.9 Oxidative stress is thought to be a major factor in 
the development of endothelial impairment, as excessive 
reactive oxygen species (ROS) activate intracellular 
signaling pathways, such as mitogen-activated protein 
kinase (MAPK). Furthermore, the uremic endothelium 
exhibits a proinflammatory phenotype, characterized 
by increased synthesis and expression of adhesion 
molecules, which have been found to be important factors 
in endothelial activation and damage.7 Many signaling 
pathways that maintain homeostasis are routinely activated 
by the creation of reactive species. However, the excessive 
generation of reactive species can be highly detrimental. 
As mitochondrial damage increases, the electron transport 
chain becomes less effective, which also results in a drop in 
ATP production and an increased ROS creation. Impaired 
mitochondrial respiration is an indication of an imbalanced 

aerobic metabolism and increased oxidative stress in 
patients receiving hemodialysis and those with CKD.10 
The etiology of CKD is influenced by hampered cellular 
antioxidant mechanisms, which also affect signaling 
processes that lead to senescence and death of renal cells, 
renal fibrosis, and reduced renal cell regeneration.

This review gives an update on the discovery of new 
antioxidant drugs for CKD and discusses the sources of 
ROS, transcription factors, and signaling mechanisms 
impacted by the oxidative stress-related pathway during the 
development of renal fibrosis. Ongoing research worldwide 
is exploring various causes of KD and contemporary 
prevention measures (Figure 1), which are outlined in this 
review article.

2. Newly identified causes of CKD
2.1. Mitochondrial dysfunction

Despite the fact that mitochondria have long been 
associated with the pathobiology of AKI, interest in how 
this cellular organelle contributes to the development of 
AKI and CKD is expanding. Mitochondrial fragmentation 
has been related to cell loss in the kidney and other organs. 
The mitochondrial fission protein dynamin-related protein 
1 (DRP1), which constricts and cleaves mitochondria and 
induces fragmentation, was specifically deleted in the 
proximal tubules, preventing renal ischemia-reperfusion 
damage and promoting epithelial recovery. Furthermore, 
DRP1 deletion in the proximal tubules after ischemia-
reperfusion slowed the development of kidney damage 
and fibrosis, suggesting that DRP1 in the proximal tubules 
increases the kidneys’ vulnerability to AKI and that 
activation of the protein contributes to maladaptive repair 
over time.11,12

2.2. Cell death pathway

The control of cell death is another crucial function 
of mitochondria, in addition to their well-known 
involvement in cellular metabolism. Recent research 
suggests that mitochondrial permeability transition is 
also an important mediator of AKI and the subsequent 
progression to CKD. These pathways include necroptosis, 
ferroptosis, and apoptosis. Studies have shown that the 
absence of caspase-3, a key pro-apoptotic enzyme, leads 
to significant kidney abnormalities in mice, highlighting 
the critical role of tubular cell death in AKI. Recent 
research suggests that ischemic conditions lead to 
reduced microvascular loss in mice but exacerbate tubular 
damage, accompanied by elevated levels of the necroptosis 
marker, receptor-interacting protein kinase 3 (RIPK3).13 
Ischemia induces apoptosis by causing oxidative stress, 
mitochondrial dysfunction, and the production of 
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Figure 1. Recent advancement in the causative factors and preventive strategies for kidney disease.
Abbreviations: MRAs: Mineralocorticoid receptor antagonists; VCAM-1: Vascular cell adhesion protein 1; ROS: Reactive oxygen species; TGF-β: 
Transforming growth factor-β; KEAP1: Kelch-like ECH associated protein 1; MPO: Myeloperoxidase; SMAD2: Suppressor of mothers against 
decapentaplegic 2; SMAD3: Suppressor of mothers against decapentaplegic 3; IKK: Ikappa B kinase; IL-6: Interleukin-6; NF-κB: Nuclear factor-kappa B; 
AGEs: Advanced glycation end-products; IL-1β: Interleukin-1β; IκBα: Ikappa B-alpha; ICAM-1: Intercellular adhesion molecule 1; NLRP3: NLR family 
pyrin domain containing 3; ACEI: Angiotensin-converting enzyme inhibitor; ARB: Angiotensin II receptor blocker; JAK: Janus kinase; STAT: Signal 
transducer and activator of transcription.

pro-apoptotic proteins. Reperfusion triggers a series of 
reactions, including immune cell activation, inflammation, 
and the production of ROS. Apoptosis is particularly likely 
to occur in proximal tubular cells during renal ischemia-
reperfusion injury (IRI). These cells, which participate in 
solute reabsorption, exhibit significant metabolic activity. 
Apoptosis is the final outcome of oxidative stress, ATP 
depletion, and mitochondrial dysfunction experienced by 
proximal tubular cells during IRI. As apoptotic cells emit 
DAMPs, immune cells get activated, and proinflammatory 
cytokines are produced, which ultimately cause damage to 
renal tissue.14

2.3. Inflammation

Necroinflammation, in which inflammation and kidney 
damage are both amplified in an auto-amplification cycle, is a 
defining feature of controlled necrosis. Necroinflammation 
can be initiated by a few necrotic cells that trigger the 
innate immune system. This can lead to further cell 
necrosis and inflammation, which can ultimately lead to 
organ failure. Damaged cells that survive renal cell injury 
also release different kinds of proinflammatory cytokines 

and chemokines, which, in conjunction with resident 
macrophages, dendritic cells, and the innate immunity 
response from infiltrating neutrophils, lymphocytes, and 
monocytes, intensify the inflammatory milieu. As a result, 
inflammation plays a crucial role in the pathophysiologic 
component of AKI.15,16

2.4. Acute respiratory distress syndrome (ARDS) 
related AKI

AKI is observed in 35% – 50% of patients who develop 
ARDS, and it dramatically increases intensive care unit 
mortality by about twofold. Renal injury can be caused 
or worsened by several factors, such as ARDS and its 
associated mechanical breathing procedures. These 
factors can be broadly categorized into five groups which 
include hyperinflammation, acid-base dysregulation, 
poor gas exchange (hypoxia/hypercapnia), hemodynamic 
consequences, and neurohormonal impacts. 
Immunosuppressed patients, especially those with T cell-
mediated immunity dysfunction, are more susceptible to 
severe viral infections due to a reduced immune system. 
Depending on the specific situation and severity of the 
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sickness, immunosuppression in transplant recipients 
with suspected or confirmed COVID-19 should be altered 
promptly. After the onset of ARDS, significant AKI 
frequently manifests in COVID-19  patients, indicating 
that lung-kidney crosstalk is the primary mechanism 
causing kidney injury.17,18

2.5. Role of SARSCoV2 in KD

Angiotensin-converting enzyme 2 (ACE2), a homolog 
of ACE, reduces vasoconstriction induced by the 
renin-angiotensin system by converting Angiotensin 
II to angiotensin 1 – 7. There are two types of 
ACE2: membrane-bound ACE2 and soluble ACE2. SARS-
CoV-2 attaches to ACE2 on the host cell membranes. The 
ability of coronaviruses to enter cells depends on their 
ability to attach to cellular receptors and prime their S 
proteins for entry by host cell proteases. As a result, the 
activity of the protease transmembrane protease, serine 
2 (TMPRSS2) to cleave the viral spike protein and the 
expression of ACE2, are essential for cell invasion. Both 
podocytes and the apical brush borders of the proximal 
tubules in the kidneys express ACE2. ACE is expressed 
in renal endothelial cells, whereas ACE2 is not. Recent 
human tissue RNA-sequencing data show that the 
expression of ACE2 in kidney tissue is about 100  times 
higher than in pulmonary tissue. The proximal tubules 
of the kidney have been shown to express TMPRSS2.19 
Antibodies against ACE2 are produced when ACE2 
binds to the SARS-CoV-2 spike protein, causing a 
conformational shift in proteins that serve as a target for 
autoantibody development. After antigen-presenting cells 
process complexes of SARS-CoV-2 and soluble ACE2, 
antibodies may cause type 2/3 hypersensitivity reactions, 
in addition to Type  4 hypersensitivity reactions. Type  2 
hypersensitivity responses during SARS-CoV-2 infection 
trigger the production of immunoglobulin M against 
ACE2, which targets ACE2 in kidney cells and causes renal 
impairment.20 Recent research revealed that SARS-CoV-2 
entered host cells through the novel CD147-spike protein 
pathway. The transmembrane glycoprotein CD147, 
which is widely expressed, has been linked to numerous 
kidney illnesses, including CKD. It is significantly 
expressed on inflammatory cells and proximal TECs.21,22 
According to Legrand et al., the enhanced production of 
inflammatory cytokines by resident and immune kidney 
cells is likely a factor contributing to tissue damage 
in COVID-19  patients. In COVID-19, nuclear factor 
erythroid 2-related factor 2 (Nrf2) and its downstream 
signaling components are likewise suppressed in the 
lungs. Inflammatory mediators such as tumor necrosis 
factor (TNF) and FAS can directly harm renal endothelial 
and epithelial cells by binding to specific receptors they 

express. These associations, observed in laboratory 
models of sepsis, are supported by plasma cytokine levels 
in patients with sepsis-associated AKI.23 Human COVID-
19 infection is caused by the interaction of the viral spike 
protein’s receptor-binding domain with the cell surface 
ACE2. The spike protein is then cleaved by proteases, such 
as TMPRSS2, in a proteolytic manner. When the virus 
interacts with CD147, which is expressed on the proximal 
convoluted tubules of the nephron and inflammatory 
cells; it can cause acute tubular necrosis, collapsing 
glomerulopathy, protein leakage from Bowman’s capsule, 
and mitochondrial dysfunction.24

2.6. Impaired renal reflex in AKI

The pathophysiology of renal disorders is thought to 
be influenced by renal sympathetic nerve activity. The 
intrarenal release of adenosine, triggered by tissue 
ischemia, increases the activity of both afferent renal 
sensory neurons and efferent renal sympathetic nerve 
activity. Equally significant in the etiology of AKI is the 
effects of efferent RSNA, which include decreased renal 
blood flow and oxygen delivery, as well as increased 
renal workload. In hypotensive and hypovolemic 
conditions, an elevation in RSNA causes acute renal 
vasoconstriction. This results in glomerulotubular 
dysfunction, hormonal changes, and the development of 
renal ischemia.25 In contrast to angiotensin-converting 
enzyme inhibitor (ACEI)/angiotensin II receptor blockers 
(ARB) monotherapy, short-term use of mineralocorticoid 
receptor antagonists (MRAs) in combination with ACEIs/
ARBs was not associated with a lower risk of cardiovascular 
or renal outcomes in patients with diabetic KD and 
hypertension. A  real-world clinical problem for MRA-
ACEI/ARB combination therapy is indicated by the risk 
of hyperkalemia and the brief duration of the combination 
medication. Numerous pathophysiological conditions, 
including diabetes, hypoxia, ureteral blockage, cirrhosis, 
and renal IRI, have been linked to this defective inhibitory 
renorenal reflex.26 Nitric oxide (NO), which functions 
as both a neurotransmitter and neuromodulator, is one 
of the several neurotransmitters in the brain that alter 
sympathetic nerve activity. Inducible nitric oxide synthase 
(iNOS) and neuronal NO synthase (nNOS)-induced 
endogenous NO synthesis seem to affect blood pressure 
and sympathetic nervous system activity differently. This 
is thought to be caused, at least in part, by the differential 
release of neurotransmitters in the rostral ventrolateral 
medulla, including inhibitory gamma-aminobutyric acid 
and sympatho-excitatory glutamate. Cyclic 3′-5′ guanosine 
monophosphate-dependent processes are suggested in the 
control of neuronal activity by microinjection of exogenous 
NO. The inhibition of Angiotensin II release also mediates 
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the effects of NO system activation within the central 
sympathetic nervous system.27

3. Current therapeutic approach of CKD
3.1. Combining ACEI and ARB therapy

According to recent studies, since the RAS is clearly 
involved in the development of renal disease, more 
complete RAS blockade may be able to halt its progression. 
In contrast to ACEI/ARB monotherapy, short-term 
use of MRAs, such as spironolactone or eplerenone, in 
combination with ACEIs/ARBs was not associated with a 
lower risk of cardiovascular and renal outcomes in patients 
with diabetic KD and hypertension. Given the short 
duration of combination therapy and the risk factor of 
hyperkalemia, MRA-integrated ACEI/ARB combination 
therapy may face practical therapeutic challenges.26,28 To 
investigate this, several trials investigating the combination 
of an ACEIs and ARBs have been performed. Although 
they have distinct mechanisms of action, ACEIs and ARBs 
both disrupt the RAS. ACEIs inhibit Angiotensin-I from 
converting to Angiotensin II, whereas ARBs prevent 
Angiotensin II from binding to Angiotensin II Type  1 
receptors. Analyses of ACEIs and other ARBs have 
revealed that they are equally effective in reducing blood 
pressure.29 By maintaining peritubular capillary perfusion 
through efferent arteriolar vasodilation and boosting the 
renal medullary plasma flow by decreasing the filtration 
fraction, ACEIs/ARBs could mitigate tubular damage 
following AKI insults. Angiotensin II blockade has been 
demonstrated to lessen the development of acute tubular 
necrosis or damage as well as tubular ischemia. In addition, 
ACEIs/ARBs are advised to slow the course of kidney 
deterioration in diabetic nephropathy. In addition, ACEIs/
ARBs lower CVD-related mortality, such as myocardial 
infarction and congestive heart failure. The use of ACEIs/
ARBs is generally supported by evidence, as they protect 
the kidneys and heart and lower all-cause mortality. Our 
present meta-analysis findings support their timely use 
following AKI and consistent with previous reports. 
Profibrotic pathways may directly damage essential organs 
if the RAAS is activated, and AKI has a major effect on 
the functioning of injury/repair pathways in distant 
organs. Following AKI and CKD, we hypothesize that 
using ACEIs/ARBs may enhance organ function and avoid 
maladaptive repair.30-32 The Ongoing Telmisartan Alone 
and in Combination with Ramipril Global Endpoint Trial 
(ONTARGET), which included 25,920 individuals with 
vascular diseases and a higher risk of diabetes, evaluated 
the benefits of ACEI ramipril, ARB telmisartan, and 
their combination. The majority of patients included in 
ONTARGET did not exhibit microalbuminuria and/
or macroalbuminuria at baseline. Therefore, it was not 

possible to determine the renal benefit of combined 
ACEI/ARB treatment for patients with proteinuria. Due 
to hypotensive symptoms, 784 participants (mostly those 
on combination therapy) permanently stopped receiving 
randomized therapy throughout the research. Compared 
to patients receiving monotherapy, the combination 
treatment group had a considerably higher number of 
patients reaching the primary renal outcome of dialysis, 
doubling of serum creatinine, or death. Acute renal failure 
was the primary cause of many dialysis episodes, and it was 
more common in individuals with normotension. These 
unsatisfactory but not totally unexpected findings highlight 
the safety concerns related to ACEI/ARB treatment.33 
The abrupt transition to sodium-glucose cotransporter-2 
inhibitors and MRAs for reducing albuminuria, followed 
by a return to ACEIs and ARBs, resulted in greatly 
reduced hyperkalemia and potassium levels, as well as a 
dramatically lowered the urinary albumin-to-creatinine 
ratio when dapagliflozin and eplerenone were taken as 
adjuvants to ACEIs or ARBs. These recent trials imply that 
dapagliflozin with eplerenone is a desirable combination 
to help individuals with CKD reduce the course of their 
illness.34 RAS blocker medications increased the risk of 
hyperkalemia, hypotension, and cough, but they also 
improved the outcomes for patients with non-dialysis 
CKD. ACEIs were more likely than ARBs and other 
antihypertensive drugs to be the most effective therapy 
for renal events, cardiovascular outcomes, and causes of 
mortality in patients with diabetic KD, and non-dialysis 
CKD. ARBs outperformed ACEIs in preventing the risk of 
cardiovascular and renal events, but they were less effective 
than ACEIs in lowering all-cause mortality.35-37

3.2. RAS and renin inhibition

ACEIs and ARBs are RAS inhibitors that slow the 
progression of mild to severe CKD. According to some 
research, discontinuing RAS inhibitors in individuals with 
severe chronic renal disease may result in an increase in 
estimated glomerular filtration rate or a slowing of its 
decline.38 Evidence does not support the combination 
therapy of aliskiren and losartan among non-diabetic 
CKD patients generally, and aliskiren does not provide 
extra renoprotection over a 144-week period in individuals 
with non-diabetic KD. However, KD responders could 
potentially benefit from direct renin inhibition, making 
it a more targeted treatment option for specific subgroups 
of CKD patients, based on some positive short-term 
outcomes.39 In particular, proinflammatory chemicals 
and stress hormones seem to increase the synthesis of 
kynurenine and its downstream metabolites, which 
may affect insulin action and favor the onset of diabetes 
mellitus and its complications, including nephropathy. 
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Progressive renal insufficiency has been associated with 
decreased tryptophan levels and kynurenine accumulation 
due to inflammation and impaired kidney function in 
diabetic individuals. Proteinuria and albuminuria are 
signs of several kidney illnesses, and a few clinical and 
experimental studies have looked into the potential link 
between the kynurenine pathway and these conditions. 
Kynurenine aminotransferases are the enzymes 
responsible for converting kynurenine into its downstream 
metabolites, and RAS inhibitors can reduce their activity, 
hence reducing the synthesis of kynurenic acid in kidney 
homogenates. These findings could be clinically significant 
because kynurenic acid has been linked to the extent 
of renal function loss in patients with kidney illness.40 
However, recent research has shown that RAS inhibitors 
may cause common adverse effects such as anemia, 
hyperkalemia, and functional renal insufficiency.41

3.3. Anti-inflammatory therapy

Renal failure in individuals with diabetes and inflammation 
has long been linked. Growing evidence from both animal 
and clinical trials suggests that endothelin Type A receptor 
antagonists may have a role in the treatment of diabetic 
renal diseases (DRD). Vasoconstriction, mesangial 
proliferation, podocyte damage, inflammation, and fibrosis 
are all linked to increased renal endothelin expression 
in DRD. In DRD patients, the expression of endothelial 
adhesion molecules such as intercellular adhesion molecule 
1 (ICAM-1), vascular adhesion protein 1 (VAP-1), and 
vascular cell adhesion protein 1 (VCAM-1) is increased, 
and this increase is associated with the severity of the 
illness. These molecules are crucial for leukocyte adhesion 
to the endothelium; therefore, blocking them may affect 
leukocyte trafficking and reduce inflammation in DRD.42

3.4. TNF inhibition

The results are consistent with previous research suggesting 
that in diabetes, hyperglycemia-induced formation 
of advanced glycation end-products (AGEs) triggers 
macrophage production of TNF. However, it is unknown 
whether TNF or its receptors play harmful functions in 
the development of KD and diabetic nephropathy. TNF 
receptor-deficient animals treated with TNF-neutralizing 
antibodies have lessened disease severity in experimental 
rodent models of renal disease.43 Despite anti-TNF drugs 
being used clinically for more than 20  years, few studies 
have looked into their clinical activity in renal illness. Such 
studies have been limited in size and mostly concentrated 
on focal segmental glomerulosclerosis and lupus nephritis, 
leaving their potential involvement in various types of 
CKD development largely unanswered.

3.5. Janus kinase inhibitors and signal transducer 
and activator of transcription (JAK/STAT) inhibition

JAK and STAT are important intracellular mediators 
of growth hormone, erythropoietin, pro-epidermal 
growth factor, and inflammatory cytokines such as 
interleukin(IL)-6, IL-23, IL-12, interferon, and its cognate 
receptor.44 According to recent clinical trials, autoimmune 
inflammatory diseases such as rheumatoid arthritis and 
ulcerative colitis can be effectively treated with JAK 
inhibitors such as tofacitinib and baricitinib. In diabetic 
KD, the JAK/STAT signaling pathway and the documented 
clinical anti-inflammatory activity of JAK inhibitors have 
prompted a Phase II investigation to assess their clinical 
effectiveness in renal illness. In this trial, patients with 
proteinuria in diabetic KD who were already on ACEIs 
and ARBs were treated with the JAK1 and JAK2 inhibitor 
baricitinib for 24  weeks. The results showed a 30 – 40% 
reduction in albuminuria with baricitinib treatment. 
However, a side effect associated with this class of drugs 
– decreased hemoglobin level – was observed. The extent 
to which these effects on albuminuria decreased translate 
into long-term advantages for renal function and mortality 
remains to be determined.45,33

3.6. Apoptosis-based treatment strategies in AKI

Recent research indicates that a variety of pathways 
contribute to both apoptosis and programmed necrosis-
induced cell death following apoptosis, including in 
AKI. Suppressing both processes may be necessary to 
completely avoid AKI. This is noteworthy because caspase 
inhibitors may affect autophagy and proinflammatory 
necroptosis, two other processes involved in cell death 
and survival. Phosphorylation and activation of p53 have 
a major function in the pathogenesis of vancomycin-
induced AKI, as well as nephrotoxicity caused by folic 
acid, aristolochic acid, and cisplatin. Ferroptosis, cell 
cycle arrest, autophagy, metabolism, fibrosis, and 
both necrotic and apoptotic cell death are among the 
processes in which p53 is implicated in the kidney. Based 
on experimental studies, the protection against ischemia 
and cisplatin-induced AKI is due to the pharmacological 
suppression or proximal tubule-specific p53 deletion.46,47 
The p53 gene is targeted by a small interfering RNA 
known as teprasiran, and in a randomized Phase 2 
clinical trial, teprasiran provided protection against 
AKI in high-risk, on-pump patients undergoing heart 
surgery.48

3.7. Phytomedicinal therapeutic approach of KD

Phytocompounds are naturally occurring groupings of 
different substances that are present in plants and fruits 
that have several health-beneficial effects, including anti-
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inflammation, anti-oxidative, anti-diabetic, anticancer, 
and nephroprotective action. Phytocompounds, including 
flavonoids, have the ability to both directly and indirectly 
reduce renal damage. Significant biological benefits of 
flavonoids in CKD include reducing oxidative stress, 
immunological modulation, antioxidant actions, anti-
inflammation, anti-apoptosis, gut microbiota regulation, 
anti-diabetic, and antihypertensive; they also help to relieve 
renal fibrosis.49 In addition, they serve as intermediaries for 
the activation of the Nrf2 antioxidant action, which lowers 
oxidative stress.50

3.7.1. Troxerutin

Troxerutin, a derivative of the naturally occurring 
bioflavonoid and found in tea and coffee. The ability of 
troxerutin to reduce drug-induced nephrotoxicity has 
been investigated in earlier research. Troxerutin reduces 
the oxidative stress induced by cisplatin and methotrexate 
by inhibiting lipid peroxidase and nicotinamide adenine 
dinucleotide phosphate oxidase 1 (NOX-1), restoring 
superoxide dismutase (SOD), GSH, and glutathione 
peroxidase (GPx) levels, and activating the Nrf2/HO-1 
signaling pathway.51 Long-term administration of 
2,2,4,4-tetrabromodiphenyl ether (PBDE-47) increased 
Kelch-like ECH associated protein 1 (KEAP1) levels, 
leading to Nrf2 ubiquitination and degradation, which 
in turn decreased Nrf2 activity and its downstream genes 
in the kidneys of mice, including catalase, GPx, SOD, 
and heme oxygenase 1 (HO-1). Nevertheless, troxerutin 
enhanced Nrf2 activity, prevented the negative effects 
of PBDE-47 and partially mimicking the action of 
carbobenzoxy-l-leucyl-l-leucinal (MG132). In the liver of 
mice, PBDE-47 was found to increase caspase-3 action 
and the levels of B-cell lymphoma 2 (Bcl-2)-associated 
X (Bax) and Bcl-2.52 Activated TGF-β has been linked to 
the pathogenesis of diabetic KD. TGF-β triggers receptor 
activation through autocrine and paracrine pathways, 
initiating a signaling cycle that ultimately regulates the 
production of ECM, leading to the impaired mesangial cell 
function. As nephropathy progresses, TGF-β builds up in 
mesenchymal cells and influences the synthesis of ECM 
proteins, such as collagen I and collagen II. TGF-β inhibits 
E-box repressors like δEF1 and SMAD interacting protein 
1 (SIP1), which regulate collagen gene expression. The role 
and target of certain kidney-dwelling microRNAs, such as 
miR-192, miR-194, miR-204, and miR-215, in the setting 
of nephropathy have received significant attention. Since 
miR-192 has been shown to target SIP1, the low levels of 
SIP1 observed in diabetics may validate the interaction 
between elevated TGF-β and miR-192, leading to low 
levels of SIP1 in renal tissue. Troxerutin’s effects on the 
kidney in a diabetic rat model appear to be mediated by 

decreased levels of miR-192, a crucial miRNA involved in 
the development and exacerbation of nephropathy, and 
the increase of SIP1. Further research is required to assess 
troxerutin’s effects on collagen levels and ECM proteins, to 
evaluate its potential as a natural preventive component 
that can help avoid renal problems53 Similarly, research 
has found that troxerutin may reduce cisplatin-induced 
kidney cell death in rats by increasing microtubule-
associated protein 4 (MAP4) expression and activating the 
PI3K/AKT signaling pathway, one of the most effective 
intracellular pathways for enhancing cell survival.54 In 
addition, troxerutin has been demonstrated to prevent 
renal damage caused by drug-induced cytotoxicity in rat 
models by increasing the antioxidant defense system and 
reducing lipid peroxidation.

3.7.2. Fisetin

Fisetin, a flavonoid is isolated from a variety of fruits, 
vegetables, seaweeds, and persimmons, as well as 
strawberries, apples, and onions. After being given 
orally to mice, it can penetrate the blood-brain barrier 
and accumulate in the brain. Fisetin is rapidly bio-
transformed through conjugative metabolism, mostly 
by glucuronidation, sulfation, and methylation in 
the liver, and is eliminated through urine and feces. 
Cytochrome P450 enzymes are among the Phase I 
and II metabolic enzymes involved in the metabolic 
process. In vitro research demonstrated that fisetin, 
like other flavonoids, inhibits a number of cytochrome 
P450 enzymes, potentially leading to drug interactions 
when combined with other medications. Fisetin inhibits 
myeloperoxidase (MPO) activity, inflammatory cytokines, 
and renal production of iNOS, thereby protecting the 
kidney from drug-induced renal impairment.55 In the 
context of ureteric obstruction, TGF-β is essential for 
cell development, proliferation, differentiation, apoptosis, 
immunological response, and renal fibrosis. TGF-β1 
binds to its receptor, TβRII, causing phosphorylation of 
TβRI and activation of TGF-β1 downstream effectors, 
including suppressor of mothers against decapentaplegic 
(SMAD). Canonical pathway involves receptor-regulated 
SMADs (R-SMADs), such as SMAD2/3, which are both 
overexpressed in human fibrotic kidneys, and responsible 
for TGF-β1 signaling transduction. Non-canonical SMAD-
independent pathways, including Rho-like GTPase, 
PI3K/AKT, Jun N-terminal kinases (JNKs), and MAPK, 
also regulate gene transcription, promoting apoptosis 
and the epithelial-to-mesenchymal transition (EMT). 
In experimental models, fisetin injections (25 mg/kg) 
administered intraperitoneally one hour prior to surgery 
and every other day for seven days. In addition, fisetin 
pretreatment (40 µM) dramatically decreased TGF-β1-
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induced phosphorylation of SMAD2/3 in human kidney-2 
(HK-2) cells. By modifying TGF-β1/SMADd3 and STAT3 
signaling, fisetin helps to improve kidney fibrosis.56,57 
Fisetin also reduces the release of inflammatory cytokines, 
AGEs, ROS, and NLR family pyrin domain containing 3 
(NLRP3) inflammasome – factors associated with diabetic 
nephropathy. When the NLRP3 inflammasome is activated 
in mice, podocyte proteins such as nephrin and podocin 
are lost, accompanied by mitochondrial dysfunction. 
Tubular injury in animals has been linked to increased high 
glucose-induced EMT and the involvement of SMAD3, 
p38 MAPK, extracellular signal-regulated kinase 1 (ERK1), 
and ERK2 signaling pathways. Fisetin treatment reduced 
the expression of fibronectin, collagen, and vascular 
endothelial growth factor A (VEGFA) while increasing 
matrix metalloproteinases 2/9. This was primarily caused 
by inactivating the TGF-β/SMAD2/3 pathways, which 
inhibits the production of ECM in the kidney. Both 
in vitro and in vivo experiments demonstrated that fisetin 
effectively protects against kidney fibrosis.58 Fisetin shows 
significant potential as a senolytic medication with a 
variety of therapeutic applications, although human data 
remain limited currently. Carefully supervised clinical 

investigations are necessary to demonstrate whether 
fisetin’s beneficial and senolytic properties can be 
translated into human use. According to a recent cohort 
study sub-analysis, serum levels of senescence-associated 
secretory phenotype factors, MMP-3 and MMP-9, platelet-
derived growth factor AA, IL-6 and IL-8, monocyte 
chemoattractant protein-1 (MCP-1), and growth 
differentiation factor 11 and 15, dropped between baseline 
and follow-up visit in healthy individuals who self-dosed 
with 100 mg/day of fisetin.59 (Figure 2).

3.7.3. Kaempferol

Kaempferol, a flavonoid widely distributed in vegetables 
and fruits, including broccoli, tea, and grapes, exhibits 
antioxidant and anti-inflammatory properties. In 
HK-2  cells, lipopolysaccharide (LPS) upregulated the 
production of TNF-α and IL-1β, demonstrating its ability 
to induce inflammation. However, the administration 
of kaempferol considerably decreased the LPS-induced 
apoptosis in HK-2  cells.60 LPS also induced STAT3 and 
NF-κB, which subsequently increased procalcitonin 
expression, a validated blood biomarker in septic patients. 
Kaempferol played a crucial anti-inflammatory role in 

Figure 2. Mechanism of action of fisetin in the protection of diabetic nephropathy.
Abbreviations: VEGFA: Vascular endothelial growth factor A; ROS: Reactive oxygen species; NLRP3: NLR family pyrin domain containing 3; AGE: Advanced 
glycation end-product; MAPK: Mitogen-activated protein kinases; TGF-β1: Transforming growth factor-β1; EMT: Epithelial-to-mesenchymal transition; 
ECM: Extracellular matrix.
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sepsis models by specifically inhibiting cyclooxygenase-2 
(COX-2) and ameliorating liver damage in animal studies. 
Moreover, kaempferol decreased the excessive production 
of TNF-α, IL-1β, IL-6, ICAM-1, and VCAM-1 in LPS-
treated groups. Kaempferol reduces COX-2 expression 
while simultaneously inhibiting the production of MCP-1, 
ICAM-1, and VCAM-1.61 Oxidative stress is triggered by 
major signaling pathways, such as the MAPK signaling 
cascades. Activation of these proteins alters stress response 
pathways unique to particular cell types and conditions, 
causing apoptosis through phosphorylation of JNK and 
P38. As a biological mediator between oxidative stress 
and the pathogenic processes, ASK1 could be a potential 
therapeutic target to stop oxidative stress-related kidney 
damage. By blocking the ROS-mediated MAPK signaling 
pathway, kaempferol lessens drug-induced renal tubular 
damage.62 The cytoplasm contains the inhibitory protein 
IκBα, while cisplatin-mediated ROS trigger signaling 
cascades involving p53, MAPK, and NF-κB. It has been 
demonstrated that phosphorylation of IκBα contributes to 
the activation of NF-κB, which translocates to the nucleus 
and activates inflammation-related genes, causing damage 
to renal cells. Kaempferol modulates NF-κB levels by 
preventing IκB kinase (IKK) phosphorylation and IκBα 
degradation, thereby reducing the risk of cisplatin-induced 
kidney damage.63 According to Yuan et al., calcium oxalate 
(CaOx) crystal deposition and crystal-induced renal 
TEC injury are the main factors to the development of 
CaOx nephrolithiasis. Excess ROS generated during 
oxidative stress is regulated by NOX. Renal oxidative 
stress and inflammation have been associated with 
elevated NOX2 expression. The activation of the NOX 
isoenzyme suppresses the oxidative and inflammatory 
damage produced by the crystals, as well as the generation 
of adhesion molecules, by downregulating the NOX2 
signaling pathway. Kaempferol may have a significant role 
in reducing the quantity of CaOx crystals that deposit 
in the renal cell.64 Nevertheless, kaempferol treatment 
decreased production of proinflammatory cytokines such 
as TNF and MPO, which lessens leukocyte infiltration and 
kidney damage. In addition, kaempferol regulated NF-kB 
levels, inhibited the activation of the IKK, and reduced 
drug-induced renal inflammation.

3.7.4. Other bioactive compounds

Quercetin, a flavonol has been shown to protect DNA 
by lowering oxidative stress. In kidney damage caused 
by ionizing radiation, quercetin inhibits neutrophil 
infiltration and subsequent release of proinflammatory 
biomarkers, reducing oxidative stress-related DNA 
damage and apoptosis. Moreover, quercetin reduced 
oxidative stress, ROS, and thiobarbituric acid induced 

by lead exposure, preventing nephrotoxicity.65 Similarly, 
quercetin’s anti-apoptotic and antioxidant properties 
protect against kidney damage caused by titanium dioxide 
nanoparticles. In addition, quercetin treatment improved 
kidney function by increasing serum SOD and lactate 
dehydrogenase levels, and total antioxidant activity, 
demonstrating nephroprotective properties. This activity is 
believed to be caused by quercetin’s ability to decrease the 
production of malondialdehyde and its capacity to remove 
ROS. Nrf2 and HO-1 are primarily activated by free 
radicals and ROS. The Nrf2/HO-1 pathway may be crucial 
for boosting the antioxidant moieties of glutathione (GSH), 
SOD, and GPx in relation to nephrotoxicity. In animals 
with copper sulfate-induced66 and gentamicin-induced 
kidney damage, quercetin significantly increased the 
mRNA expression of HO-1 and Nrf2 when administered at 
a dose of 50 mg/kg.67-69 The Food and Drug Administration 
has classified quercetin as “Generally Recognized as Safe” 
for use as a dietary supplement due to its well-established 
safety and tolerability profile in humans. Another study 
reported that myricetin is a bioactive phytocompound that 
has historically been used to treat a variety of ailments, 
including malaria, dysentery, diarrhea, and hypertension. 
Different parts of the plant, such as its fruits, bark, and 
leaves, have been utilized in these treatments. Other 
reported uses include antihypertensive and vasodilatory 
properties, analgesic and anti-inflammatory properties, 
antimalarial activity, and antidiabetic properties.51 
Flavonoids are potential substances to explore further 
for the development of innovative CKD therapy agents. 
However, the dearth of clinical studies implies that further 
research is required before flavonoids can be applied in 
medical treatments. Finding the metabolites produced 
after dosage and increasing bioavailability is also essential, 
as they could increase the advantages of flavonoids.70 A 
flavone called luteolin, which is naturally present in various 
plants, has several pharmaceutical properties, like anti-
inflammatory effects. It also lessens kidney damage caused 
by mercuric chloride. Luteolin decreases total TNF-α 
expression and several other indicators of inflammation 
by blocking NF-kB and activating the Nrf2 pathway.71 In 
the Middle East, it has been used as traditional medicine 
since ancient times. The primary aglycones found are 
rhamnocitrin, kaempferol, quercetin, and rhamnetin. 
Renal colic and its associated symptoms were treated by the 
ancient Egyptians with a fruit decoction that also relieved 
prostatic pain, urolithiasis, and kidney inflammation. 
Raising urine pH and citrate concentration, reducing urine 
oxalates, and protecting renal epithelial cells from calcium 
oxalate monohydrate crystals have been shown to limit 
the oxalate formation associated with the formation of 
kidney stones.72,73 Among the Lespedeza species, Lespedeza 
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capitata is less studied, although extracts from its leaves and 
stems, as well as the roots of Asparagus racemosus (family 
Asparagaceae), are used for urinary tract and KD due to 
the presence of bioactive compounds, including quercetin, 
apigenin, resveratrol, quercetin-3-D-galactoside, 
3,3’,4’-trihydroxyflavone (synonym 5,7-dideoxyquercetin), 
and 6-methyldihydroquercetin.74-76

3.8. Glucagon-like peptide 1 receptor agonists 
(GLP-1RAs)

The human GLP-1RAs are stimulated by the pharmaceutical 
class of peptides known as GLP-1RAs. There is debate 
regarding whether GLP-1RAs affect glomerular 
hemodynamics. GLP-1RAs may reduce glomerular 
hyperfiltration by reducing vasoconstriction induced by 
endothelin-1 and Angiotensin II. However, in theory, 
tubule-glomerular feedback would cause vasoconstriction 
of the pre-glomerular arteriole in response to reduced 
proximal salt reabsorption. However, the current study 
found that exenatide had a net vasodilatory impact on 
pre-glomerular arterioles, indicating a greater direct 
vasodilation effect. According to these results, GLP-
1RAs are renal vasodilators and proximal diuretics that, 
in healthy individuals, have a negligible effect on tubule-
glomerular feedback. It is probable that GLP-1 protects 
the renal system from damage caused by oxidation 
because GLP-1R activation stimulates the cyclic adenosine 
monophosphate–protein kinase A pathway, which results 
in antioxidative actions.40 GLP-1RAs also decreased the 
expression of a number of inflammatory markers in rats 
in a diabetic nephropathy model, including collagen I, 
alpha-smooth muscle actin, tubulointerstitial TNF-alpha, 
MCP-1, fibronectin, and prevented tubulointerstitial 
lesions. These biomarkers have all been linked to diabetic 
nephropathy.77

4. Conclusion
Research on the prevention and protection of slow-
progressing renal illnesses has been carried out globally. 
At present, dialysis and kidney transplantation are the 
primary treatments for KD, but these options are very 
expensive and have a number of drawbacks. In light of 
these challenges, further research is required to prevent 
and treat ESKD and to prolong the lives of KD patients. 
The current research on KD shows potential for opening 
new pathway to reduce the global burden of KD.

This review primarily highlights that ACEIs, ARBs, 
renin inhibitors, apoptosis-based treatment strategies, 
phytomedicines, JAK/STAT inhibition, and TNF inhibition 
may offer nephroprotective effects well beyond their main 
indications for diabetic nephropathy, kidney cancer, 
AKI, and CKD. Moreover, combining these therapies 

with a specific administration route could enhance their 
effectiveness, as they may provide additive nephroprotective 
effects. Future research focused on molecular pathway will 
be necessary to determine the effect of these treatments.
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